题目描述
在这片寂静的夜色之下,他就这样静静的降临在我的面前,他的眼神就好像能看透了一切,露出了无所畏惧的笑容。一袭白斗篷和一顶白礼帽,不带一丝多余的动作,他的脸在单眼眼睛跟逆光之下。
to 世纪末的魔术师
By the mysterious man
怪盗基德在上次失败后,对美丽的月之瞳宝石非常觊觎,他想要得到它,以世纪末的魔术师的名义。但是却遇到了重重机关阻拦,眼看到了月之瞳宝石盒之前,怪盗基德却停下了脚步。
“世界上有些谜,还是让它永远成为谜比较好”
话音刚落,只见一片白雾,待雾散开之时,他已经消失在月色之中。
在怪盗基德走后,你潜入进去,却发现,上面篆刻着一段奇怪的话:
在缥缈的宇宙中,有一条穿越时空的隧道,在这条隧道中,有着许多星体和能源体,他们都排列在一条直线上,对于每个星体而言,他们都需要能源体的照耀才能够存活于这条时空隧道当中,当然一个能源体可以同时为多个星体提供能源(对于一个能源体来说,也可能没有星体需要它提供能源)。但是,有所限制的是每个能源体只能为与自身相距x之内的星体提供能源。现在需要你找到最小的x,使得每个星体都能够得到能源(即每个星体必须得到至少一个能源体的照耀)。
现在是你作为怪盗基德的徒弟大展身手的时候了。
输入描述:
输入共三行,第一行有两个数n和m(1 <= n, m <= 1e5),分别代表有n个星体,m个能源体。
第二行有n个数a1, a2, ... an,代表n个星体的位置。(-2e9 <= a[i] <= 2e9)
第三行有m个数b1, b2, ... bm,代表m个能源体的位置。(-2e9 <= b[j] <= 2e9)
输出描述:
输出最小的x,满足每个星体都有至少一个能源体为其提供能源。
示例1
输入
3 2
-2 2 4
-3 0
输出
4
说明
对于3个位置的星体,与其距离最近的能源体距离分别为1,2,4,所以能源体照耀的范围只需为4即可
示例2
输入
4 3
7 -2 5 6
1 8 -3
输出
3
思路:一开始的想法是二层循环算每个星球与能源之间的最小距离,内层循环找到最小距离后在外层循环里找最大值,就是最后的结果,结果超时了;后来看到大家用二分查找,使用了lower—bound函数直接找到离该星球最近的能源,但是要注意lower—bound返回的是地址,注意特殊处理边界。。。
AC代码:
#include <bits/stdc++.h>
using namespace std;
long long a[10001],b[10001];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
}
for(int i=1; i<=m; i++)
{
scanf("%d",&b[i]);
}
sort(b+1,b+m+1);
long long c,d,h=0,ans;
for(int i=1; i<=n; i++)
{
c=lower_bound(b+1,b+m+1,a[i])-b;
if(c>m)
c=m;
ans=abs(b[c]-a[i]);
if(c>1)
ans=min(abs(b[c-1]-a[i]),ans);
h=max(h,ans);
}
printf("%lld\n",h);
return 0;
}