最大公因子及其性质
如果 A A A 和 B B B 为不全为 0 0 0,则它们的公因子的集合是一个有限的整数集,通常包括 + 1 +1 +1 和 − 1 -1 −1,我们对其中最大的那个公因子感兴趣。
定义2
不全为
0
0
0 的整数
A
A
A 和
B
B
B 的最大公因子是指能够同时整除
A
A
A 和
B
B
B 的最大整数。
A
A
A 和
B
B
B 的最大公因子记作
g
c
d
(
A
,
B
)
gcd(A, B)
gcd(A,B)。
g
c
d
(
0
,
N
)
=
N
gcd(0, N) = N
gcd(0,N)=N,虽然所有的正整数都能整除
0
0
0,我们还是定义
g
c
d
(
0
,
0
)
=
0
gcd(0, 0) = 0
gcd(0,0)=0。(这样可以确保关于最大公因子的相关结论在所有情况下均成立。)
例如:
24
24
24 和
84
84
84 的公因子有
±
1
\pm 1
±1、
±
2
\pm2
±2、
±
3
\pm3
±3、
±
4
\pm4
±4、
±
6
\pm6
±6、
±
12
\pm12
±12,因此
g
c
d
(
24
,
84
)
=
12
gcd(24, 84) = 12
gcd(24,84)=12。类似的,通过查看公因子集合,我们有
g
c
d
(
0
,
44
)
=
44
gcd(0, 44)=44
gcd(0,44)=44,
g
c
d
(
−
6
,
−
15
)
=
3
gcd(-6, -15) = 3
gcd(−6,−15)=3,
g
c
d
(
−
17
,
289
)
=
17
gcd(-17, 289) = 17
gcd(−17,289)=17
定义3
设
A
A
A、
B
B
B 均为非
0
0
0 整数,如果
A
A
A 和
B
B
B 的最大公因子
g
c
d
(
A
,
B
)
=
1
gcd(A, B)=1
gcd(A,B)=1,则称
A
A
A 与
B
B
B 互质。
注意由于
−
A
-A
−A 的因子与
A
A
A 的因子相同,故有
g
c
d
(
A
,
B
)
=
g
c
d
(
∣
A
∣
,
∣
B
∣
)
gcd(A, B) = gcd(\vert A\vert, \vert B\vert)
gcd(A,B)=gcd(∣A∣,∣B∣),其中 $ \vert A \vert$ 表示
A
A
A 的绝对值,因此,我们只关注正整数对的最大公因子。
定理4
A A A、 B B B 是整数,且 g c d ( A , B ) = D gcd(A, B) = D gcd(A,B)=D,那么 g c d ( A ÷ D , B ÷ D ) = 1 gcd(A\div D, B\div D) = 1 gcd(A÷D,B÷D)=1。
证明
已知
A
A
A、
B
B
B 是整数,且
g
c
d
(
A
,
B
)
=
D
gcd(A, B) = D
gcd(A,B)=D。我们将证明
A
÷
D
A\div D
A÷D、
B
÷
D
B\div D
B÷D 除了
1
1
1 之外没有其他的公因子。假设还有正整数
E
E
E 使得
E
∣
(
A
/
D
)
E \mid (A / D)
E∣(A/D) 且
E
∣
(
B
/
D
)
E \mid (B / D)
E∣(B/D)。
那么存在整数
K
K
K 和
L
L
L 使得
A
÷
D
=
K
E
A \div D = KE
A÷D=KE,
B
÷
D
=
L
E
B \div D = LE
B÷D=LE,于是
A
=
D
E
K
A = DEK
A=DEK,
B
=
D
E
L
B = DEL
B=DEL。因此
D
E
DE
DE 是
A
A
A、
B
B
B 的公因子,因为
D
D
D 是
A
A
A、
B
B
B 的最大公因子,故
D
E
⩽
D
DE \leqslant D
DE⩽D,于是
E
=
1
E = 1
E=1。
因此
g
c
d
(
A
÷
D
,
B
÷
D
)
=
1
gcd(A \div D, B \div D) = 1
gcd(A÷D,B÷D)=1。
推论 1
如果 A A A、 B B B 为整数,且 B ≠ 0 B \neq 0 B=0,则 A ÷ B = P ÷ Q A \div B = P \div Q A÷B=P÷Q,其中 P P P、 Q Q Q 为整数,且 g c d ( P , Q ) = 1 gcd(P, Q) = 1 gcd(P,Q)=1, Q ≠ 0 Q \neq 0 Q=0。
证明
假设 A A A、 B B B 为整数且 B ≠ 0 B \neq 0 B=0,令 P = A ÷ D P = A \div D P=A÷D, Q = B ÷ D Q = B \div D Q=B÷D,其中 D = g c d ( A , B ) D = gcd(A, B) D=gcd(A,B),则 P ÷ Q = ( A ÷ D ) ÷ ( B ÷ D ) P \div Q = (A \div D) \div (B \div D) P÷Q=(A÷D)÷(B÷D),由定理4可知 g c d ( P , Q ) = 1 gcd(P, Q) = 1 gcd(P,Q)=1,命题得证。
定理5
令 A A A、 B B B、 C C C 是整数,那么 g c d ( A + C B , B ) = g c d ( A , B ) gcd(A+CB, B) = gcd(A, B) gcd(A+CB,B)=gcd(A,B)。
证明
令
E
E
E 是
A
A
A、
B
B
B的公因子,由定理2可知
E
∣
(
A
+
C
B
)
E \mid (A + CB)
E∣(A+CB),所以
E
E
E 是
A
+
C
B
A + CB
A+CB 和
B
B
B 的公因子。
如果
F
F
F 是
A
+
C
B
A + CB
A+CB 和
B
B
B 的公因子,由定理2可知
F
F
F 整除
(
A
+
C
B
)
−
C
B
=
A
(A + CB) - CB = A
(A+CB)−CB=A,所以
F
F
F 是
A
A
A、
B
B
B 的公因子,因此
g
c
d
(
A
+
C
B
,
B
)
=
g
c
d
(
A
,
B
)
gcd(A + CB, B) = gcd(A, B)
gcd(A+CB,B)=gcd(A,B)。
定义4
如果 A A A、 B B B 是整数,那么它们的线性组合具有形式 M A + N B MA + NB MA+NB,其中 M M M、 N N N 都是整数。
定理6
两个不全为 0 0 0 的整数 A A A、 B B B 的最大公因子是 A A A、 B B B 的线性组合中最小的正整数。
证明
令
D
D
D 是
A
A
A、
B
B
B 的线性组合中最小的正整数,
D
=
M
A
+
N
B
D = MA + NB
D=MA+NB,其中
M
M
M、
N
N
N 是整数,我们将证明
D
∣
A
D \mid A
D∣A、
D
∣
B
D \mid B
D∣B。
由带余除法,得到
A
=
D
Q
+
R
A = DQ + R
A=DQ+R,
0
⩽
R
<
D
0\leqslant R < D
0⩽R<D。
由
A
=
D
Q
+
R
A = DQ + R
A=DQ+R 和
D
=
M
A
+
N
B
D = MA + NB
D=MA+NB,得到
R
=
A
−
D
Q
=
A
−
Q
(
M
A
+
N
B
)
=
(
1
−
Q
M
)
A
−
Q
N
B
R = A - DQ = A - Q(MA + NB) = (1 - QM)A-QNB
R=A−DQ=A−Q(MA+NB)=(1−QM)A−QNB。
这就证明了整数
R
R
R 是
A
A
A、
B
B
B 的线性组合。因为
0
⩽
R
<
D
0 \leqslant R < D
0⩽R<D,而
D
D
D 是
A
A
A、
B
B
B 的线性组合中最小的正整数,于是我们得到
R
=
0
R = 0
R=0 (如果
R
≠
0
R \neq 0
R=0,那意味着
R
R
R 才是所有线性组合中最小的正整数,这与
D
D
D 是所有线性组合中最小的正整数矛盾),因此
D
∣
A
D \mid A
D∣A,同理可得,
D
∣
B
D \mid B
D∣B。
我们证明了
A
A
A、
B
B
B 的线性组合中最小的正整数
D
D
D 是
A
A
A、
B
B
B 的公因子,剩下要证的事它是
A
A
A、
B
B
B 的最大公因子,为此只需证明
A
A
A、
B
B
B 所有的公因子都能整除
D
D
D。
由于
D
=
M
A
+
N
B
D = MA + NB
D=MA+NB,因此如果
C
∣
A
C \mid A
C∣A 且
C
∣
B
C \mid B
C∣B,那么由定理2有
C
∣
D
C \mid D
C∣D,因此
D
>
C
D >C
D>C,这就完成了证明。
定义5
令
A
1
A_1
A1,、
A
2
A_2
A2、
…
\dots
…、
A
N
A_N
AN 是不全为
0
0
0 的整数,这些整数的公因子中最大的整数就是最大公因子。
A
1
A_1
A1,、
A
2
A_2
A2、
…
\dots
…、
A
N
A_N
AN 的最大公因子记为
g
c
d
(
A
1
,
A
2
,
…
,
A
N
)
gcd(A_1,A_2,\dots,A_N)
gcd(A1,A2,…,AN)。(注意
A
i
A_i
Ai 在这里面出现的顺序并不影响结果。)
引理1
如果 A 1 A_1 A1、 A 2 A_2 A2、 … \dots …、 A N A_N AN,是不全为 0 0 0 的整数,那么 g c d ( A 1 , A 2 , … , A N − 1 , A N ) = g c d ( A 1 , A 2 , … , g c d ( A N − 1 , A N ) ) gcd(A_1, A_2, \dots, A_{N-1}, A_N) = gcd(A_1, A_2, \dots, gcd(A_{N-1}, A_N)) gcd(A1,A2,…,AN−1,AN)=gcd(A1,A2,…,gcd(AN−1,AN))。
证明
N
N
N 个整数
A
1
A_1
A1、
A
2
A_2
A2、
…
\dots
…、
A
N
A_N
AN 的任意公因子也是
A
N
−
1
A_{N-1}
AN−1 和
A
N
A_N
AN 的公因子,因此也是
g
c
d
(
A
N
−
1
,
A
N
)
gcd(A_{N-1}, A_N)
gcd(AN−1,AN) 的因子。
同样
N
−
2
N-2
N−2 个整数
A
1
A_1
A1、
A
2
A_2
A2、
…
\dots
…、
A
N
−
2
A_{N-2}
AN−2 和
g
c
d
(
A
N
−
1
,
A
N
)
gcd(A_{N-1}, A_N)
gcd(AN−1,AN) 的公因子也是
N
N
N 个整数
A
1
A_1
A1、
A
2
A_2
A2、
…
\dots
…、
A
N
A_N
AN 的公因子,因为如果某整数整除
g
c
d
(
A
N
−
1
,
A
N
)
gcd(A_{N-1}, A_N)
gcd(AN−1,AN),那么它一定同时整除
A
N
−
1
A_{N-1}
AN−1 和
A
N
A_N
AN。
因此,这
N
N
N 个整数的公因子由前
N
−
2
N-2
N−2 个整数与后两个整数组成的集合的公因子完全相同,它们的最大公因子也一定相同。