sklearn实现KNN分类算法

Pyhthon Sklearn 机器学习库提供了 neighbors 模块,该模块下提供了 KNN 算法的常用方法,如下所示:
 

类方法说明
KNeighborsClassifierKNN 算法解决分类问题
KNeighborsRegressorKNN 算法解决回归问题
RadiusNeighborsClassifier基于半径来查找最近邻的分类算法
NearestNeighbors基于无监督学习实现KNN算法
KDTree无监督学习下基于 KDTree 来查找最近邻的分类算法
BallTree无监督学习下基于 BallTree 来查找最近邻的分类算法


本节可以通过调用 KNeighborsClassifier 实现 KNN 分类算法。下面对 Sklearn 自带的“红酒数据集”进行 KNN 算法分类预测。最终实现向训练好的模型喂入数据,输出相应的红酒类别,示例代码如下:

 
  1. #加载红酒数据集
  2. from sklearn.datasets import load_wine
  3. #KNN分类算法
  4. from sklearn.neighbors import KNeighborsClassifier
  5. #分割训练集与测试集
  6. from sklearn.model_selection import train_test_split
  7. #导入numpy
  8. import numpy as np
  9. #加载数据集
  10. wine_dataset=load_wine()
  11. #查看数据集对应的键
  12. print("红酒数据集的键:\n{}".format(wine_dataset.keys()))
  13. print("数据集描述:\n{}".format(wine_dataset['data'].shape))
  14. # data 为数据集数据;target 为样本标签
  15. #分割数据集,比例为 训练集:测试集 = 8:2
  16. X_train,X_test,y_train,y_test=train_test_split(wine_dataset['data'],wine_dataset['target'],test_size=0.2,random_state=0)
  17. #构建knn分类模型,并指定 k 值
  18. KNN=KNeighborsClassifier(n_neighbors=10)
  19. #使用训练集训练模型
  20. KNN.fit(X_train,y_train)
  21. #评估模型的得分
  22. score=KNN.score(X_test,y_test)
  23. print(score)
  24. #给出一组数据对酒进行分类
  25. X_wine_test=np.array([[11.8,4.39,2.39,29,82,2.86,3.53,0.21,2.85,2.8,.75,3.78,490]])
  26. predict_result=KNN.predict(X_wine_test)
  27. print(predict_result)
  28. print("分类结果:{}".format(wine_dataset['target_names'][predict_result]))

输出结果:

红酒数据集的键:
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])
数据集描述:
(178, 13)
0.75
[1]
分类结果:['class_1']

最终输入数据的预测结果为 1 类别。

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python是一种常用的编程语言,广泛应用于数据科学和机器学习领域。其中机器学习库sklearn提供了许多常用的算法和工具,方便用户进行数据分析和模型训练。 其中之一是k近邻(k-nearest neighbors,KNN分类算法KNN是一种基于实例的学习方法,它通过在特征空间中寻找最近的k个邻居来预测新的样本标签。在Python中使用sklearn实现KNN分类算法非常简单。 首先,需要导入相关的库和模块。常用的库包括numpy(处理数值计算)、sklearn(机器学习库)和sklearn.neighbors(KNN算法模块)。 接下来,需要准备样本数据集。这包括特征矩阵和对应的标签。可以使用numpy数组或pandas数据框来存储数据。 然后,需要对数据进行预处理。这包括划分数据集为训练集和测试集,并进行特征缩放和标准化等操作。可以使用sklearn.preprocessing模块中的函数来进行这些操作。 接下来,需要创建一个KNeighborsClassifier对象,并设置相关参数。其中,最重要的是k值,即选择最近的k个邻居来进行预测。 然后,使用fit()方法将训练集的特征矩阵和标签传递给KNeighborsClassifier对象,以进行模型训练。 最后,可以使用predict()方法将测试集的特征矩阵传递给KNeighborsClassifier对象,并得到对应的预测结果。 除了这些基本步骤之外,还可以通过交叉验证和网格搜索等方法来优化模型的参数和评估模型的性能。sklearn库提供了相应的函数和方法来实现这些操作。 总之,使用Python中的sklearn库可以很方便地实现KNN分类算法。只需要按照上述步骤导入相关库、准备数据、预处理数据、创建模型、训练模型和预测结果即可。这是一个简便且高效的方法,帮助用户实现KNN分类算法来解决分类问题。 ### 回答2: K最近邻(K-nearest neighbors,简称KNN)是一种基本的分类算法,在Python中可以使用scikit-learn库(sklearn)来实现。以下是使用sklearn实现KNN分类算法的步骤: 1. 导入需要的库和模块:首先需要导入sklearn库中的KNeighborsClassifier模块,以及其他辅助模块,如numpy和pandas。 2. 准备数据集:将数据集划分为特征集(X)和目标标签(y)。特征集包含用于分类的属性,而目标标签则包含每个样本的分类结果。 3. 对数据集进行预处理:根据需要进行数据预处理,如数据清洗、缺失值处理或特征标准化等。 4. 划分数据集:将数据集划分为训练集和测试集,一般会使用train_test_split函数将数据按照一定的比例划分。 5. 创建KNN模型:使用KNeighborsClassifier创建一个KNN分类模型,并可设置K值和距离度量方式等参数。 6. 模型训练:使用fit函数对训练集进行训练,让模型学习训练集的模式。 7. 模型预测:使用predict函数对测试集进行预测,得到分类结果。 8. 模型评估:对预测结果进行评估,可使用accuracy_score等函数计算准确率、召回率等指标。 9. 调参优化:通过调整K值或距离度量方式等参数,可以对模型进行优化,提高分类性能。 10. 结果分析和应用:根据模型预测的结果进行分析,可以根据需要进行后续的实际应用。 总之,使用sklearn实现KNN分类算法可以简化KNN模型的搭建和使用过程,使得开发者能够快速实现KNN算法并进行分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为我喧哗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值