
深入学习机器学习:从基础理论到实践应用
文章平均质量分 97
计算机魔术师
彼方终有荣光在 —— 尊敬的考生您好,您即将上岸。 CSDN内容合伙人,专业:数据科学与大数据专业 研究方向:人工智能、智能感知 华为云云享专家,人工智能领域优质创作者,阿里云乘风者计划专家博主
展开
-
【深度学习 | LSTM】解开LSTM的秘密:门控机制如何控制信息流
LSTM(Long Short-Term Memory)是一种常用于处理序列数据的**循环神经网络模型**。LSTM的核心思想是在传递信息的过程中,通过门的控制来选择性地遗忘或更新信息。LSTM中主要包含三种门:输入门(input gate)、输出门(output gate)和遗忘门(forget gate),以及一个记忆单元(memory cell)。原创 2023-09-19 15:02:21 · 442 阅读 · 16 评论 -
【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (四)
本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅原创 2023-09-18 16:41:34 · 79 阅读 · 14 评论 -
【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看?(三)
本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅。原创 2023-09-12 17:33:57 · 189 阅读 · 22 评论 -
【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看?(二)
本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅。原创 2023-08-30 15:50:18 · 582 阅读 · 34 评论 -
【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看?(一)
本文旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!原创 2023-08-27 16:03:20 · 360 阅读 · 21 评论 -
【深度学习 | ResNet核心思想】残差连接 & 跳跃连接:让信息自由流动的神奇之道
在神经网络中,残差连接和跳跃连接是两个重要的概念,它们被广泛应用于解决梯度消失、信息丢失等问题,提升了深度神经网络的性能。残差连接通过引入捷径连接和残差学习机制,使得网络能够更轻松地训练,并在计算机视觉任务中取得显著成果。跳跃连接允许信息更自由地流动,并保留了输入数据中的细节和语义信息。它的设计使得信息更容易传播到后面的层次,避免了信息丢失。通过求和操作或拼接操作,跳跃连接将输入数据直接添加到网络某一层输出之上,从而保留了原始输入的重要特征。以图像分类任务为例,我们可以通过在卷积神经网络中引入跳跃连原创 2023-08-23 08:30:00 · 181 阅读 · 3 评论 -
【机器学习 | 分类指标大全】全面解析分类评估指标:从准确率到AUC,多分类问题也不在话下, 确定不来看看?
您是否正在努力评估和优化您的分类模型的性能?您是否想要了解更多关于分类模型评估指标的知识?现在,本文为您提供了一个全面的多分类指标解析,帮助您更好地理解和评估您的模型性能。原创 2023-08-21 08:30:00 · 249 阅读 · 24 评论 -
【深度学习 | 数据可视化】 视觉展示分类边界: Perceptron模型可视化iris数据集的决策边界
📢 【标题】:探索决策边界:一个可视化的视角📝 【导语】:决策边界是机器学习中一个关键概念,它可以帮助我们理解模型如何对不同类别的数据进行分类。通过使用Perceptron算法和数据可视化技术,我们可以直观地展示决策边界的特点和效果。本文将介绍如何使用Perceptron算法和Matplotlib库来绘制决策边界,并提供了一个基于鸢尾花数据集的示例。🔍 【正文】: 在机器学习中,决策边界是一个用于分隔不同类别数据的超平面或曲线。理解决策边界的形状和位置对于了解模型的分类效果至关重要。通过使用P原创 2023-08-19 16:55:17 · 1231 阅读 · 22 评论 -
【深度学习 | 感知器 & MLP(BP神经网络)】掌握感知的艺术: 感知器和MLP-BP如何革新神经网络
掌握感知的艺术:感知器和MLP-BP如何革新神经网络,学习深度学习神经网络的基石原创 2023-08-17 19:58:33 · 1287 阅读 · 16 评论 -
【深度学习 | 梯度那些事】 梯度爆炸或消失导致的模型收敛困难?挑战与解决方案一览, 确定不来看看?
今天来跟大家聊一聊深度学习中的一个重要问题——梯度爆炸和梯度消失。这可是学习深度学习的同学们经常会遇到的难题哦!😱😱首先,我们先来了解一下梯度爆炸的问题。当我们使用梯度下降算法进行训练时,有时候会出现梯度值变得非常大的情况,这就是梯度爆炸。梯度爆炸可能会导致模型无法收敛或收敛速度过慢。😫😫那么,梯度爆炸是如何发生的呢?有几个原因可能导致这个问题的出现。首先,我们要注意激活函数的选择。如果我们在神经网络中使用了具有饱和性质的激活函数,比如Sigmoid函数,而且权重初始化不当,那么就可能会出现原创 2023-08-14 15:24:42 · 370 阅读 · 29 评论 -
【机器学习 | 数据预处理】 提升模型性能,优化特征表达:数据标准化和归一化的数值处理技巧探析
在现代数据驱动的社会中,数据的质量和准确性对于机器学习和数据分析至关重要。而数据标准化和归一化则是提高数据质量和机器学习模型性能的关键步骤。数据标准化和归一化是提高数据质量和机器学习模型性能的重要步骤。如果你对数据处理和机器学习感兴趣, 让我们一起探索数据的世界,发现数据的美妙!原创 2023-08-13 15:17:50 · 197 阅读 · 6 评论 -
【深度学习 | 反向传播】释放反向传播的力量: 让训练神经网络变得简单
释放反向传播的力量:训练神经网络变得简单原创 2023-08-13 08:45:00 · 127 阅读 · 12 评论 -
【机器学习 | 决策树】利用数据的潜力:用决策树解锁洞察力
和大家聊一聊机器学习中的一项重要技术——决策树🌳,它可是数据科学领域的一颗璀璨明星💫!利用决策树,我们可以深入挖掘数据的潜力,为我们带来无尽的洞察力✨。🌿在机器学习中,决策树是一种强大的算法,它模拟了人类的决策过程,帮助我们理解和解释数据中的规律。通过将数据集分解成许多决策节点和叶子节点,决策树可以将复杂的问题简化为一系列简单的判断步骤,从而实现对数据进行分类和预测📊。原创 2023-08-05 15:03:40 · 547 阅读 · 18 评论 -
【机器学习 | 朴素贝叶斯】朴素贝叶斯算法:概率统计方法之王,简单有效的数据分类利器
贝叶斯算法是一种常用的概率统计方法,它利用贝叶斯定理来进行分类和预测。其在计算机还没有出现前几十年就存在了,那个时候科学家们都是用手算的,是最早的机器学习形式之一,**该算法基于统计学原理,通过已知的先验概率和观测到的数据,更新对事件发生概率的估计**。因为有着一个很强的假设,每个数据特征都是独立的,这也是条件独立的前提条件,也叫"朴素的"的假设,故叫朴素贝叶斯算法。原创 2023-07-29 08:30:00 · 626 阅读 · 4 评论 -
【深度学习 | CNN】“深入解析卷积神经网络与反卷积:从生活案例到原理的全面指南” (从一维、二维、三维讲解)
《深入解析卷积神经网络:从原理到应用的全面指南》。在这篇指南中,我们将深入探讨卷积神经网络(Convolutional Neural Networks, CNNs)的原理和应用,为您提供全面的解析和指导。随着人工智能和机器学习技术的快速发展,卷积神经网络已经成为图像识别、计算机视觉和自然语言处理等领域的核心技术。无论您是一位学术研究人员,还是一位工程师或开发人员,这份全面指南都将为您提供宝贵的知识和见解。原创 2023-06-27 14:00:00 · 821 阅读 · 23 评论