分组背包问题之一维数组

上期给大家讲了分组背包问题的二维数组解法,没看过的建议先去看看。
分组背包问题之二维数组
另外分组背包其实就是由01背包转化而来的,不知道01背包怎么做的建议先去学学,也可以看看我的文章。
01背包问题之一维数组
上篇文章结尾也说了,分组背包问题可以用一维数组解决,这次就来解决它。
题目如下:

【题目介绍】

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

【输入格式】

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;

【输出格式】

输出一个整数,表示最大价值。

【数据范围】

0<N,V≤100
0<Si≤100
0<vij,wij≤100

【输入样例】

3 5
2
1 2
2 4
1
3 4
1
4 5

【输出样例】

8

原题链接:原题链接

还是一样,【算法分析】和【数据存储】这里就不再啰嗦说一遍了,感兴趣的自己去看看。

【dp数组含义】

还是和01背包一维数组的dp数组含义一样,就是背包容量为 j 的背包能装的最大价值。

【填表】

填表其实和二维的分组背包差不了太多,只要将所有的二维dp数组降为一维dp数组即可,即:

for(int i=1;i<=n;i++){
   //循环物品 
		for(int j=m;j>=0;j--){
   //循环背包,由于是由01背包转变而来,所以依然要倒序循环 
			dp[j]=dp[j];
			for(int k=0;k<s[i];k++){
   //循环第 i 个物品组的每个物品 
				递推公式 
			}
		}
	}

由上面我们可以发现,dp[j]=dp[j]这不是句废话吗,所以可以将其删掉。

【递推公式】

既然填表时降了一维,那其实递推公式再降一维即可了,即:

if(v[i][k]<=j)dp[j]=max(dp[j],dp[j-v[i][k]]+w[i][k]);

【初始化】

所有背包问题的一维数组解法都是一样的࿰

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值