- 博客(25)
- 收藏
- 关注
原创 昇思训练营day25学习心得-SSD目标检测
SSD是单阶段的目标检测算法,通过卷积神经网络进行特征提取,取不同的特征层进行检测输出。SSD采用了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。SSD目标检测主流算法分成可以两个类型:1.two-stage方法:RCNN系列2.one-stage方法:YOLO和SSD。
2024-07-24 00:41:47 199
原创 昇思训练营day24学习心得-FCN图像语义分割
FCN(全卷积网络)是深度学习在图像语义分割领域的里程碑式贡献。它摒弃了传统CNN中的全连接层,转而采用全卷积层,实现了图像到图像的端到端分割。这种方法直接对图像中的每个像素进行预测,生成与原图大小完全一致的label map,即每个像素都被赋予了相应的类别标签。图像语义分割是图像处理和机器视觉技术中的关键一环,它涉及对图像中每个像素点的细致分类。与普通的图像分类任务不同,语义分割不仅要求识别出图像中的不同对象,还需要将这些对象精确地定位到具体的像素位置上。1.卷积化。
2024-07-24 00:03:20 192
原创 昇思训练营day23学习心得-HHL 算法
如果A不是Hermitian矩阵,则考虑A+AT的对称部分或构造A⊗A∗等方式构造一个等效的Hermitian矩阵A~。HHL算法是一种量子算法,旨在解决线性方程组 Ax=b,其中 A 是一个 Hermitian 矩阵(或可放宽至更一般的条件),b 是一个单位向量。利用 U 和量子相位估计(QPE)技术,对 A 的特征值和对应的特征向量进行编码。通过测量和经典后处理,从经过条件旋转的量子态中提取出解向量 x 的近似值。(k),根据特征值的倒数(或近似倒数)对量子态的幅度进行调整。
2024-07-23 22:37:12 155
原创 昇思训练营day22学习心得-在量子化学计算中应用量子变分求解器
量子化学的核心任务之一是求解薛定谔方程,以获取分子体系的能量和波函数。然而,直接求解含时薛定谔方程往往非常复杂,因此通常采用玻恩-奥本海默近似(BO近似),将原子核与电子的运动分离,从而简化为求解电子的定态薛定谔方程。:量子变分求解器是一种结合了量子计算和经典计算的混合算法,旨在通过变分原理来逼近分子体系的基态能量。算法的核心在于利用量子计算机来高效计算不同参数下的能量期望值,并通过经典计算机上的优化算法来优化这些参数。:通过优化参数化的试探波函数(如UCCSD拟设),使其能量期望值逼近真实的基态能量。
2024-07-23 18:25:18 191
原创 昇思训练营day21学习心得-通过量子神经网络对鸢尾花进行分类
定义损失函数,设定需要优化的参数,然后将搭建好的量子机器学习层和MindSpore的算子组合,构成一张更大的机器学习网络,最后对该模型进行训练。为了更加直观地了解这100个样本组成的数据集,画出所有样本不同特征之间组成的散点图。将Encoder、Ansatz和必要的测量操作组合起来,形成完整的量子神经网络。构建量子神经网络的Ansatz部分,即量子电路的主体部分。使用训练好的模型对测试集进行预测,评估模型的泛化能力。定期评估模型在训练集上的准确率,以监控模型的性能。检查是否安装了sklearn库。
2024-07-23 01:37:23 290
原创 昇思训练营day19学习心得-量子神经网络在自然语言处理中的应用
使用经典的全连接层或其他类型的神经网络层来构建CBOW模型的嵌入层。同时为了评估量子嵌入层的性能,需要将其与经典嵌入层进行比较。根据指定的嵌入维度(如5维),我们需要设计对应的测量策略。例如,通过测量特定量子比特的组合(如Z0Z1Z0Z1)来估计哈密顿量的期望值,从而得到嵌入向量的各个维度。还需要在量子线路的最开始加上了Hadamard门,将初态制备为均匀叠加态,用以提高量子神经网络的表达能力。量子版词向量嵌入层结合前面的编码量子线路和待训练量子线路,以及测量哈密顿量,将num_embedding。
2024-07-22 01:28:40 153
原创 昇思训练营day18学习心得-量子近似优化算法
Max-Cut问题要求将图的顶点划分为两个集合,使得集合间的边数最大化。然而,随着图中顶点数量的增加,穷举法的计算量呈指数级增长。这些算法虽然不能保证找到最优解,但通常能在合理的时间内给出一个质量相当不错的解。利用QAOA算法来解决最大割问题(Max-Cut),熟悉MindSpore Quantum中量子线路的搭建和训练。2.构造一个哈密顿量,使得当相连顶点处于不同量子态时,哈密顿量的期望值为-1。1.每个顶点赋予一个量子比特,不同的量子态代表顶点属于不同的集合。等方法在图中添加边,并画出图的结构。
2024-07-21 18:43:46 253
原创 昇思训练营day17学习心得-基于MindSpore Quantum的Grover搜索算法和龙算法
Grover搜索算法是一种利用量子叠加和相干性,通过迭代放大目标态概率振幅,以实现无序数据库高效搜索的量子算法。门产生均匀叠加态,然后反复调用Grover迭代(或称为𝐺算子),以放大目标项的概率振幅同时抑制非目标项的概率振幅,最后对末态进行测量,那么就能以极大的概率得到目标态|𝜔〉。Oracle算子𝑈𝜔可以翻转目标态的相位,条件相移算子𝑃𝑃可以翻转|0〉态以外的每个态的相位。除了在规模为4的数据库中找1个数据的场景,Grover算法不能够精确的搜索出所标记态。对末态进行测量,以高概率得到目标态∣ω〉。
2024-07-21 18:05:28 328
原创 昇思训练营day16学习心得-LSTM+CRF序列标注
不同的是在解码时同时需要将第𝑖𝑖个Token对应的score取值最大的标签保存,供后续使用Viterbi算法求解最优预测序列使用。根据CRF模型,计算给定输入序列和标签序列的得分。:指的是给定输入序列,给序列中每个Token进行标注标签的过程。对序列进行标注,实际上是对序列中每个Token进行标签预测,可以直接视作简单的多分类问题。而CRF是一种用于序列标注的判别式概率模型,它能够考虑整个序列的上下文信息,而不是仅仅对单个Token进行分类。:利用CRF层建模标签之间的依赖关系,提高序列标注的准确性。
2024-07-18 02:21:36 276
原创 昇思训练营day15学习心得-GAN图像生成
GAN,全称为生成对抗网络,是一种深度学习模型,由Ian Goodfellow及其同事于2014年提出。:为了跟踪生成器的学习进度,在每轮迭代结束后,将一组固定的遵循高斯分布的隐码test_noise。GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习,从而产生了相当好的输出。接口,读取和解析MNIST数据集的源文件构建数据集,进行必要的预处理。输入到生成器中,通过固定隐码所生成的图像效果来评估生成器的好坏。激活函数,使其返回 [0, 1] 的数据范围内,得到最终概率。:使用download。
2024-07-17 22:48:24 339
原创 昇思训练营day14学习心得-Diffusion扩散模型
定义一个正则数据集(如Fashion-MNIST、CIFAR-10或ImageNet),并对数据集进行预处理,包括缩放图像大小、归一化像素值以及应用数据增强技术(如随机水平翻转)。扩散模型是一种基于马尔可夫链的生成模型,它从纯噪声开始,通过逐步去噪过程,最终生成一个实际图像。由于神经网络的参数在时间(噪声水平)上共享,为了让神经网络能够区分不同的时间步,作者使用正弦位置嵌入来编码时间步长(噪声水平)。其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。所谓前向过程,即向图片上加噪声的过程。
2024-07-17 22:05:01 208
原创 昇思训练营day13学习心得-CycleGAN图像风格迁移互换
CycleGAN即循环对抗生成网络,该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。它只需要两种域的数据,不需要他们有严格对应关系,是一种新的无监督的图像迁移网络。参考的 ResNet 模型的结构,根据输入图片的大小(128×128)采用6个残差块相连,超参数 n_layers。交替训练判别器和生成器,先固定生成器训练判别器,再固定判别器训练生成器。加载训练好的生成器网络模型参数文件对原图进行风格迁移,生成新的图像。展示原图与生成图的对比,验证模型效果。
2024-07-17 18:07:51 236
原创 昇思训练营day12学习心得-基于MindSpore的红酒分类实验
可以通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息。对于分类问题,根据K近邻的类别标签,通过投票机制确定输入样本的类别。在验证集上验证KNN算法的有效性,选择K值(如K=5)并计算分类精度。K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,3. 距离的定义:KNN算法的实现依赖于样本之间的距离,其中最常用的距离函数就是欧氏距离。等算子来计算输入样本与训练集中所有样本的距离,并计算出top k近邻。
2024-07-16 17:56:27 228
原创 昇思训练营day11学习心得-ShuffleNet图像分类
ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。每一组的卷积核大小为in_channels/g*k*k,总参数量为(in_channels/g*k*k)*out_channels,是正常卷积参数的1/g。引入Channel Shuffle机制(通道重排),将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。2.堆叠多个 ShuffleNet 模块,每个模块包含下采样和多个基本单元,逐步降低特征图的长宽并增加通道数。
2024-07-16 12:46:57 179
原创 昇思训练营day10学习心得-ResNet50图像分类
定义visualize_model函数,使用训练好的模型对数据集进行预测,并将预测结果可视化。2.
2024-07-16 03:09:22 207
原创 昇思训练营day9学习心得-ResNet50迁移学习
使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。做法:在一个非常大的基础数据集上训练得到一个预训练模型,再使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。
2024-07-16 01:43:50 435
原创 昇思训练营day8学习心得-保存与加载
day7学习了如何调整超参数,并进行网络模型训练。day8需要学习如何保存与加载模型,以用于微调和后续的模型推理与部署。
2024-07-13 14:42:11 148
原创 昇思训练营day7学习心得-模型训练
从网络构建中加载代码,构建一个神经网络模型。超参是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。
2024-07-13 14:21:31 146
原创 昇思训练营day6学习心得-函数式自动微分
对于一元函数 y=f(x),在点 x0 处的微分定义为: dy=f′(x0)Δx在几何上,微分描述了函数图像上某一点附近的小段曲线与通过该点的切线的近似程度。对于函数y=f(x)在点x0处,微分dy可以看作是当x从x0增加到x0+Δx(其中Δx是一个很小的增量)时,函数值y的增量Δy的近似值。函数式自动微分是一种通过计算机程序自动计算函数导数数值的方法。它的基本原理是导数运算法则。
2024-07-13 00:24:23 356
原创 昇思训练营day4学习心得-数据变换
为什么需要数据变换?通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。在day3的数据集中学到,MindSpore提供基于Pipeline的,通过和实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。数据变换(Transforms)在数据处理Pipeline中有着相当重要的作用,它们用于在数据被送入模型进行训练或推理之前,对数据进行预处理和转换。这些变换可以确保数据符合模型的输入要求,提高模型的性能和泛化能力。
2024-07-12 21:52:52 275
原创 昇思训练营day3学习心得-数据集
数据集(Dataset)是一组数据的集合,这些数据通常被用来训练、测试或评估模型。它可以包含结构化数据(如表格数据)或非结构化数据(如文本、图像、音频或视频文件)。数据集中的数据可以是原始的,也可以是经过预处理的,包括清洗、转换和选择等步骤。其目的是为机器学习算法提供输入,以便算法能够学习数据的内在规律和模式,并据此进行预测、分类、聚类或其他类型的分析。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。
2024-07-11 22:45:16 239
原创 昇思训练营day2学习心得-张量
稀疏张量通常可以采用多种格式来表示,其中最常见的是COO(Coordinate List,坐标列表)、CSR(Compressed Sparse Row,压缩稀疏行)和CSC(Compressed Sparse Column,压缩稀疏列)格式。稀疏张量在多个领域都有广泛的应用,如在图像处理上:虽然图像数据本身通常是稠密的,但在某些预处理步骤(如TF-IDF编码)或特定类型的图像处理任务中,稀疏张量可被用来表示具有大量暗像素或低信息量的图像区域。稀疏张量是一种特殊张量。1.根据数据直接生成。
2024-07-11 22:01:23 174
原创 昇思训练营day1学习心得-快速入门
MindSporeMindSpore是华为推出的一款开源深度学习框架,旨在提供一套端到端的开发工具和算法库,以简化深度学习模型的开发、训练和部署过程。自动并行计算:MindSpore具有自动并行计算的能力,可以根据硬件资源和网络拓扑自动进行并行计算的优化。这意味着你可以专注于模型的设计和开发,而不需要手动处理并行计算。支持多处理器架构:MindSpore面向全场景构建,支持多处理器架构,如Ascend、GPU、CPU等,为开发者提供灵活的开发环境动态计算图。
2024-07-11 21:26:15 375
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人