自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (1)
  • 收藏
  • 关注

原创 三门问题的c++论证

参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。,是一个源自博弈论的数学游戏问题,出现美国电视游戏节目《Let's Make a Deal》,以主持人蒙提·霍尔(Monty Hall)的名字命名。三门问题使一个著名的概率学问题,他的出现和被解决推动了统计学和概率学发展。可以更改n的值来调整实验的次数,以达到更精确的目的。

2024-05-01 12:00:34 111 1

原创 C++高尔顿钉板实验

从入口处放进小圆玻璃球,使其能够从钉板中穿过,当小圆球向下降落过程中,碰到钉子后都以50%的概率向左或右,到达下一层钉子。直到滚到底板的一个格子中为止。只要球的数量够大,它们就能在底板将堆成近似于正态的密度函数图形(也有人说是二项分布,为了方便大家参考就都写出来了)。这里用的是系统时间的奇偶性来做的随机,相较于随机数种子我觉得这种方式更严谨。注:表示层数和小球个数的n,m都是可以更改的,这里就随便写了两个值用于测试。高尔顿钉板实验是由英国生物统计学家高尔顿所设计的研究随机现象的模型。

2024-02-12 09:38:37 458 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除