数据结构·堆·完全二叉树

目录

二叉树介绍

概念

特殊的二叉树

二叉树的性质

二叉树的存储方式

1.顺序存储

2.链式存储

堆实现二叉树

代码

Heap.h

Heap.c

以下是测试用例 

Test.c

解释示例1

解释示例2

结束语 


二叉树介绍

节点的度 :一个节点含有的子树的个数称为该节点的度; 如上图: A 的为 6
叶节点或终端节点 :度为 0 的节点称为叶节点; 如上图: B C H I... 等节点为叶节点
非终端节点或分支节点 :度不为 0 的节点; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 :若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图: A B 的父节点
孩子节点或子节点 :一个节点含有的子树的根节点称为该节点的子节点; 如上图: B A 的孩子节点
兄弟节点 :具有相同父节点的节点互称为兄弟节点; 如上图: B C 是兄弟节点
树的度 :一棵树中,最大的节点的度称为树的度; 如上图:树的度为 6
节点的层次 :从根开始定义起,根为第 1 层,根的子节点为第 2 层,以此类推;
树的高度或深度 :树中节点的最大层次; 如上图:树的高度为 4
堂兄弟节点 :双亲在同一层的节点互为堂兄弟;如上图: H I 互为兄弟节点
节点的祖先 :从根到该节点所经分支上的所有节点;如上图: A 是所有节点的祖先
子孙 :以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是 A 的子孙
森林 :由 m m>0 )棵互不相交的树的集合称为森林;

概念

一棵二叉树是结点的一个有限集合,该集合 :
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

特殊的二叉树

1. 满二叉树 :一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K ,且结点总数是,则它就是满二叉树。
2. 完全二叉树 :完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 n 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树的性质

1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 i 层上最多有 2^(i-1) 个结点.
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是 2^h-1
3. 对任何一棵二叉树 , 如果度为 0其叶结点个数为n₀ , 度为 2的分支结点个数为n₂ ,则有n₀=n₂ +1
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度h=log₂(n+1).
(ps:log₂(n+1)是log以 2为底,n+1 为对数 )
5. 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对于序号为i 的结点有:
1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
2. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 则无左孩子
3. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 则无右孩子

二叉树的存储方式

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储

顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,下面实现关于堆的二叉树实现,不过需要注意的是二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

 

根据上图可知,顺序存储只适合存储完全二叉树,并不适用于非完全二叉树的存储 

2.链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,先接触二叉链,后面接触的数据结构如红黑树等会用到三叉链。

堆实现二叉树

引入逻辑概念物理概念

逻辑概念:即上面图所示的二叉树概念图

物理概念:以数组实现二叉树

        也就是说树状图是我们为方便理解而设立的一个假想的概念图,实际上我们操作的还是一个数组,利用下标来实现数据的跳跃访问来帮助实现一些问题 

代码

Heap.h

#pragma once

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

//打印
void HeapPrint(HP* php);

//初始化
void HeapInit(HP* php);

//销毁
void HeapDestroy(HP* php);

//插入 -- 根据堆的特性,只会尾插,但是插入x继续保持堆形态
void HeapPush(HP* php , HPDataType x);

//出堆 -- 删除堆顶的元素
void HeapPop(HP* php);

//调整顺序
void Swap(HPDataType* p1, HPDataType* p2);

//向上调整元素 -- 保持堆的形态
void AdjustUp(HPDataType* a, int child);

//向下调整 -- 从头开始调
void AdjustDown(HPDataType* a, int n, int parent);

//看头 -- 返回堆顶的元素
HPDataType HeapTop(HP* php);

//判断是否为空
bool HeapEmpty(HP* php);

//返回元素个数
int HeapSize(HP* php);

Heap.c

#include "Heap.h"

//打印
void HeapPrint(HP* php)
{
	for (int i = 0; i < php->size; ++i)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

//初始化
void HeapInit(HP* php)
{
	assert(php);	//不能为空
	php->a = NULL;
	php->size = php->capacity = 0;//这里也可以先扩容,也可以在后面扩容
}


//销毁
void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;	
}

//调整顺序
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//向上调整元素 -- 保持堆的形态
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;	//计算方法,无论是奇数的还是偶数的都可以求出父节点
	while (child > 0)	//当孩子等于0的时候就停下
	{
		if (a[child] < a[parent])	//这里大于还是小于可以控制是大堆还是小堆,这里是在建小堆
		{
			//传地址过去
			Swap(&a[child], &a[parent]);
			//更新父节点
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;	//当满足堆的性质时就跳出循环
		}
	}
}


//插入 -- 根据堆的特性,只会尾插,但是插入x继续保持堆形态
void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	//先判断扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newCapacity;
	}

	//元素放到最后
	php->a[php->size] = x;
	php->size++;

	//调整顺序 -- 传最后一个元素过去,注意要减一,因为前面++了
	AdjustUp(php->a, php->size - 1);

}

//向下调整 -- 从头开始调
void AdjustDown(HPDataType* a, int n, int parent)
{
	//假设左边小
	int minChild = parent * 2 + 1;
	while (minChild < n) //防止越界
	{
		if (minChild + 1 < n && a[minChild + 1] < a[minChild])
		{
			minChild++;
		}

		if (a[minChild] < a[parent])
		{
			Swap(&a[minChild], &a[parent]);
			parent = minChild;	//
			minChild = parent * 2 + 1;	//计算左孩子
		}
		else
		{
			break;
		}
	}

}

//出堆 -- 删除堆顶的元素
//时间复杂度: O(logN)
void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);

	
}

//看头 -- 返回堆顶的元素
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	return php->a[0];

}

//判断是否为空
bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

//返回元素个数
int HeapSize(HP* php)
{
	assert(php);

	return php->size;
}

以下是测试用例 

Test.c

#include "Heap.h"

//测试一
//int main()
//{
//	int a[] = { 15,18,19,25,28,34,65,49,27,37 };
//	int a[] = { 65,100,70,32,50,60 };
//	HP hp;
//	//先创立一个再初始化
//	HeapInit(&hp);
//
//	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
//	{
//		HeapPush(&hp, a[i]);
//	}
//
//	//HeapPush(&hp, 10);
//	//HeapPrint(&hp);
//
//	//HeapPop(&hp);
//	//HeapPrint(&hp);
//
//	//HeapPop(&hp);
//	//HeapPrint(&hp);
//
//	while (!HeapEmpty(&hp))
//	{
//		printf("%d ", HeapTop(&hp));
//		HeapPop(&hp);
//	}
//
//	return 0;
//}

//测试二
void HeapSort(int* a, int n)
{
	//建堆 -- 向上调整建堆 -- 时间复杂度: -- O(N*logN)
	//for (int i = 1; i < n; i++)
	//{
	//	AdjustUp(a, i);
	//}

	//大思路:选择排序,依次选数,从后往前排
	//升序 -- 建大堆
	//降序 -- 建小堆
	//建堆 -- 向下调整建堆 -- 时间复杂度更简单 -- 解释示例1


	//建堆 -- 向下调整建堆 -- 时间复杂度: -- O(N)
	for (int i =(n-1-1)/2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	//选数
	int i = 1;	//只需要选n-1个数,最后留下的自然是最大或最小的数
	while (i < n)
	{
		Swap(&a[0], &a[n - i]);	//把第一个数与最后一个数交换
		//向下调整建堆
		AdjustDown(a, n - i, 0);
		++i;
	}


}


//int main()
//{
//	//int a[] = { 65,100,70,32,50,60 };
//	 
//	int a[] = { 15,1,19,25,8,34,65,4,27,7 };
//	HeapSort(a, sizeof(a) / sizeof(int));
//
//	for (size_t i = 0; i < sizeof(a)/sizeof(int); ++i)
//	{
//		printf("%d ", a[i]);
//	}
//	printf("\n");
//
//	return 0;
//}



//TOP - K问题 -- 解释示例2
//TOP - K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
//比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
//对于Top - K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
//	数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
//	1. 用数据集合中前K个元素来建堆
//	前k个最大的元素,则建小堆
//	前k个最小的元素,则建大堆
//	2. 用剩余的N - K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
//	比特就业课
//	将剩余N - K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素



//以文件的方式进行堆排序选数
//测试用例三

void CreateDataFile(const char* filename, int N)
{

	FILE* fin = fopen(filename, "w");	//以写文件的方式打开
	if (fin == NULL)
	{
		perror("fopen fail");
		return;
	}
	srand(time(NULL));    //给定时间种子让其随机生成数据
	for (int i = 0; i < N ; ++i)
	{
		fprintf(fin, "%d\n", rand()%1000000);  //%的原因是为了测试该项目的正确性,下面可以手动在文件里添加超过一百万的数据,让其测试,看是否可以选出来
	}

	fclose(fin);
}


void PrintTopK(const char* filename, int k)
{
	assert(filename);

	FILE* fout = fopen(filename, "r");
	if (fout == NULL)
	{
		perror("fopen fail");
		return;
	}

	int* minHeap = (int*)malloc(sizeof(int) * k);
	if (minHeap == NULL)
	{
		perror("minHeap fail");
		return;
	}
	//如何读取前k个数据
	for (int i = 0; i < k; ++i)
	{
		fscanf(fout, "%d", &minHeap[i]);	//默认空格或者换行键为改数据的终止
	}
	//建k个数的小堆
	for (int j = (k-2)/2; j >= 0; --j)
	{
		AdjustDown(minHeap, k, j);
	}
	//继续读取后N-K个数据
	int val = 0;
	while (fscanf(fout , "%d", &val) != EOF)
	{
		if (val > minHeap[0])
		{
			minHeap[0] = val;	//直接赋值
			AdjustDown(minHeap, k, 0);
		}
	}

	for (int i = 0; i < k; ++i)
	{
		printf("%d ", minHeap[i]);
	}

	free(minHeap);
	fclose(fout);
}

int main()
{
	
	const char* filename = "Data.txt";
	int N = 10000;	
	int k = 10;
	//CreateDataFile(filename, N);//随机创立一些数据
	PrintTopK(filename, k);

	return 0;
}

解释示例1

调整次数 = 每一层节点个数 * 这一层最坏向下调整次数

使用向下调整建堆 

第1层,2^0个节点,需要向下移动h-1层

第2层,2^1个节点,需要向下移动h-2层

第3层,2^2个节点,需要向下移动h-3层

第4层,2^3个节点,需要向下移动h-4层

…… 

第h-1层,2^(h-2)个节点,需要向下移动1层

第h层,2^(h-1)个节点,不需要向下移动

向上调整建堆

第1层,2^0个节点,不需要向下移动

第2层,2^1个节点,需要向下移动1次

第3层,2^2个节点,需要向下移动2次

第4层,2^3个节点,需要向下移动3次

…… 

第h-1层,2^(h-2)个节点,需要向下移动h-2次

第h层,2^(h-1)个节点,需要向下移动h-1次

而且根据二叉树的性质,最后一层一定是占最大节点数的大概有一半,综上所述使用向下调整是最优解

解释示例2

N个数,找k个最大的

1、排序 -- O(N*logN)

2、堆选数

        a、建大堆 -- 选K次即可(Pop k次)-- 时间复杂度:O(N+logN*K)

       一般而言:K较小,而当N很大的时候就不行了,比如:N = 100亿 K = 100,那么a方法就不行了 -- 空间浪费并且需要注意的是在堆实现中,内存是存不下这么多的数据 例:100亿个整数大约就是40G了,这对于内存来说是一个很大的空间

        b、 建小堆

        1、用前K个数,建K个数的小堆

        2、依次遍历后续N-K个数,比堆顶的数据大,就替换堆顶的数据,向下调整进堆,最后堆里面的数据就是最大的前K个了

        时间复杂度:K + logK*(N-K) ≈ O(N)  空间复杂度:O(K)

结束语 

上穷碧落下黄泉,两处茫茫皆不见。
                                                         唐·白居易 《长恨歌》

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风玉骨

爱了!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值