numpy.histogramdd(sample, bins=10, range=None, normed=None, weights=None, density=None)
计算一些数据的多维直方图
sample :(N, D) 数组, 或 (D, N) 数组
要进行直方图分析的数据。 注意当array_like时样本的不寻常解释:
1) 如果是数组,则每一行都是D维空间中的坐标,
2) 如果为array_like,则每个元素都是单个坐标的值列表。
第一种形式应该是首选。
bins :sequence 或 int, 可选
bin规格:
1) 描述沿每个维度单调递增的bin边缘的数组序列。
2) 每个维度的bins数量(nx,ny,…=bins)。
3) 所有维度的bins数(nx = ny =…=bins)。
range :sequence, 可选。在序列中输入None,将导致最小值和最大值用于相应的尺寸。默认值None。
density :bool,可选。
如果默认值为False,则返回每个bin中的样本数。
如果为True,则在bin处返回概率密度函数。
normed :bool, 可选。密度参数的别名,其行为相同。通常首选密度。
weights :可选。权重每个样本(x_i,y_i,z_i,...)的值w_i的数组。 如果标准为True,则将权重标准化为1。 如果normed为False,则返回的直方图的值等于属于每个bin的样本的权重之和。