自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

hustlei的专栏

study hard, just for i like it.

  • 博客(88)
  • 收藏
  • 关注

原创 Python科学计算和数据分析库简介

数据处理是科学计算、数据分析以及人工智能的基础,Python在数据表示、数据清理、数据统计、数据可视化拥有众多易用高效的库,广泛用于工程领域、大数据、机器学习、人工智能等领域。如:NumPy为科学计算和数据分析库基础库;Scipy是像matlab一样的科学计算库;Pandas是一个数据分析库;Matplotlib是一个二维可视化绘图库、Seaborn是一个基于Matplotlib的更加易用的二维可视化绘图库;Mayavi2是一个可交互3D可视化绘图库

2021-12-23 22:30:33 2557

原创 汇编语言基础:寄存器和寻址方式

寄存器分类AX、BX、CX、DX 一般用来存放数据,所以被称为数据寄存器。8位寄存器AX,BX,CX,DX在8086中为16位寄存器,每个寄存器的高位和低位均可以作为8位寄存器访问。x32构架x32架构中,通用寄存器都在16位版本的基础上扩展成为32位版本,名字加了E作为前缀。x64构架在x64架构中,通用寄存器都扩展成为64位版本,名字也进行了升级。SI和DI功能和BX相同,可以用于间接寻址。主要用于存放存储单元在段内的偏移量。但是SI、DI不可分割成8位寄存器。在16为构架中,16位的指针只能访问64k

2022-06-06 08:35:26 9872 1

原创 pytoch人工神经网络基础:最简单的分类(softmax回归+交叉熵分类)

softmax回归分类原理对于回归问题,可以用模型预测值与真实值比较,用均方误差这样的损失函数表示误差,迭代使误差最小训练模型。那么分类问题是否可以用线性回归模型预测呢。最简单的方法就是用softmax方法,softmax的原理:以in_features个特征,out_features个类别为例。比如用花瓣大小、生长位置、花瓣形状三个因素,判断荷花和梅花,则in_features为3,out_feautures为2。模型为y1=x11w11+x12w12+x13w13+b1y2=x21w2

2022-03-21 15:38:43 2051

原创 pytorch人工神经网络基础:线性回归神经网络(nn.Module+nn.Sequential+nn.Linear+nn.init+optim.SGD)

线性回归是人工神经网络的基础,感知机都就是单层或少数层的线性回归。线性回归属于有监督的学习,即根据有标签(已知结果的数据)拟合线性方程权重,然后根据拟合的方程预测未知数据。通常步骤为:准备数据:获取有标签的数据(有结果的数据)。建立模型:根据线性方程设计模型。配置模型:确定损失函数、优化方法、初始化参数。训练模型:根据有标签的数据进行回归学习。测试:根据训练好的(回归结果)线性方程模型计算,评估模型是否准确。1 准备工作导入必要的库。import torchfrom torch im

2022-03-19 17:45:15 2754 1

原创 人工神经网络基础:最小二乘法线性回归

先放上代码和注释吧,有空再写#!/usr/bin/env python# -*- coding: utf-8 -*-'''最小二乘法回归y=wx+b。by lei<hustlei@sina.cn>'''import numpy as npimport matplotlib.pyplot as plt#回归数据集##生成数据集'''在线性方程y=2x+3上,随机取N个点,加上随机噪声,作为回归对象'''N=200 #回归数据点个数。np.random.seed(2

2022-03-10 23:20:25 2949

原创 Scipy系列(二):线性代数及积分

Scipy系列目录文章目录一、 概述二、 Scipy线性代数1 Scipy基本功能2 解线性方程组3 矩阵分解4 特征值和特征向量5 矩阵函数6 矩阵方程求解器(控制理论方程)三、 Scipy积分1 对给定函数积分1.1 通用积分1.2 向量函数积分1.3 多重积分1.3.1 双重积分1.3.2 多重积分1.4 高斯积分法计算积分1.5 Romberg方法计算积分2 对给定样本进行离散积分2.1 梯形法离散积分2.2 梯形法累计计算离散积分2.3 辛普森法计算离散积分2.4 Romberg法计算离散积分

2022-03-02 21:02:39 1745

原创 Scipy系列(一):常量、IO及特殊函数

Scipy系列目录文章目录一、 概述二、 思维导图三、 Scipy常量、IO及特殊函数1 Scipy常量模块(scipy.constants)1.1 数学常数1.2 物理常数1.3 单位信息2. 特殊函数(scipy.special)3 输入输出(scipy.io)3.1 matlab数据文件3.2 wav声音文件一、 概述相比Numpy,Scipy提供了非常多的物理常量以及单位信息,提供了非常多的基础数学函数和特殊数学函数。比如光速、普朗克常量、电子质量以及各种物理量单位,贝塞尔基函数、伽玛函数

2022-02-23 17:12:41 2018

原创 Scipy系列目录

Python科学计算和数据分析库系列目录Scipy简介Scipy是基于Numpy的科学计算工具库,方便、易于使用、专为科学和工程设计,是一个用于数学、科学、工程领域的常用软件包。Scipy提供了许多用户友好和高效的高阶方法,如插值,积分,统计,优化,图像处理等等。Scipy包含Matlab的大多计算功能(Simulink和行业库除外),和数据处理的关系不大,数值计算或者工程研究应用更多一些。Scipy系列目录[Scipy系列(一):常数、IO和特殊函数][Scipy系列(二):线性代数及积

2022-02-23 16:49:14 1189

原创 Seaborn系列(六):样式、数据集及组合图

Seaborn系列目录文章目录1. Seaborn样式1.1 设绘seaborn主题1.2 style样式设置1.3 可用样式style1.4 颜色盘设置1.5 上下文设置1.6 恢复默认样式2. 组合图2.1 jointplot组合分布图2.2 pairplot配对关系图1. Seaborn样式1.1 设绘seaborn主题sns.set_theme() #切换到seaborn默认主题。#sns.set() #set是set_theme的别称,通常建议使用set函数在0.8

2022-02-23 16:13:10 6408

原创 Seaborn系列(五):回归(Regression)及矩阵(Matrix)绘图

Seaborn系列目录文章目录1. 回归及矩阵绘图API概述2. 回归统计绘图2.1 lmplot、regplot绘图2.2 residplot绘图3. 矩阵图3.1 heatmap热力图3.2 clustermap分层聚合热力图Seaborn中的回归包括回归拟合曲线图以及回归误差图。Matrix图主要是热度图。1. 回归及矩阵绘图API概述seaborn中“回归”绘图函数共3个:lmplot(回归统计绘图):figure级regplot函数,绘图同regplot完全相同。(lm指lin

2022-02-23 16:07:31 3118

原创 Seaborn系列(四):类别统计绘图(categorical)

Seaborn系列目录文章目录1. 类别统计绘图API概述2. catplot基本绘图2.1 catplot绘制分类散点图2.2 catplot绘制分类分布图2.3 catplot绘制分类估计图3. 分类散点图3.1 strip图3.2 swarm图4 分类分布图4.1 box图4.2 boxen图4.3 violin图5. 分类估计图5.1 barplot5.2 pointplot5.3 countplot在研究数值变量之间的关系时,如果其中一个主要变量是"类别",那么使用更类别统计绘图方法可能

2022-02-23 16:00:40 4006

原创 Seaborn系列(三):分布统计绘图(distribution)

Seaborn系列目录文章目录1. 分布统计绘图API概述2. displot单变量分布图(直方图、核密度、累积分布)2.1 displot函数绘制单变量分布图2.2 displot直方图kde图同时叠加绘制2.3 displot绘图同时叠加rug图2.4 displot双变量分布图(直方图、核密度)2.5 displot分组统计绘图2.6 displot绘制多个子图3 displot、histplot直方图详解3.1 直方图基本参数设置3.1.1 横向直方图3.1.2 直方柱数量3.1.3 直方图样式

2022-02-23 15:46:33 25949 5

原创 Seaborn系列(二):关系绘图

Seaborn系列目录文章目录1. 关系绘图API概述2. relplot散点图2.1 relplot简单的关系绘图2.2 relplot颜色(hue)分组绘图2.3 relplot样式(style)分组绘图2.4 relplot多子图绘图3. relplot折线图3.1 relplot折线图(是否自动排序绘图)3.2 示例数据集3.3 relplot折线图(x,y一对多,聚类绘制)3.4 relplot分组绘图(hue、style、size)3.5 relplot分组绘图样式4. scatterplo

2022-02-23 15:24:44 2873

原创 Seaborn系列(一):绘图基础、函数分类、长短数据类型支持

Seaborn系列目录文章目录1. Seaborn特点2. 基本绘图方法2.1 numpy数组数据绘图2.2 pandas数组数据绘图3. Seaborn函数分类3.1 根据图形控制级别分类3.2 绘图函数功能分类4. 长格式、短格式数据Seaborn绘图4.1 长格式、短格式数据4.2 宽格式数据绘图4.3 长格式数据绘图4.4 凌乱数据5. Seaborn dataset数据集5.1 load_dataset及缓存5.2 数据集说明1. Seaborn特点Seaborn是一个基于matplot

2022-02-23 13:35:14 3152

原创 Seaborn系列目录

Seaborn简介Seaborn是基于matplotlib的2D绘图库。它在统计绘图方面更加方便易用,并且有自己预定义的样式。Seaborn并非用于替代matplotlib,而是对于数据分析等工作更加方便。Seaborn系列目录Seaborn系列(一):绘图基础、函数分类、长短数据类型支持及数据集[Seaborn系列(二):关系绘图][Seaborn系列(三):分布统计绘图][Seaborn系列(四):分类统计绘图][Seaborn系列(五):回归及矩阵绘图][Seaborn系列(六):

2022-02-23 13:08:15 1589

原创 docker常用命令

文章目录1. docker安装2. docker镜像操作3. 容器操作4. 容器生命周期管理5. docker服务(service)管理docker虽然有windows、macos版本,但是只建议在linux上用docker。因为docker只能在linux中实现容器(其他系统实际上是安装linux虚拟机上使用docker)。1. docker安装curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun#从脚本安装Do

2022-02-04 22:23:11 952

原创 常用git命令表

git常用命令

2022-01-28 22:51:08 579

原创 Matplotlib系列(八):嵌入Python Qt界面

Matplotlib系列目录文章目录一、 简介二、 思维导图三、 Matplotlib嵌入PyQt界面及Web界面1. Matplotlib嵌入GUI基本方法2. matplotlib界面渲染引擎2.1 可用的渲染引擎后端2.2.渲染引擎后端设置3. 可嵌入GUI的画布2.3.1 画布及backend模块2.3.2 qt创建画布的方法3. Matplotlib嵌入Qt3.1 Matplotlib嵌入Qt GUI示例3.2 Matplotlib画布工具栏4 Matplotlib与GUI互动操作5 Matp

2022-01-24 14:32:17 14978 8

原创 Matplotlib系列(七):动画

Matplotlib系列目录文章目录一、 简介二、 思维导图三、 Matplotlib动画及图形修改操作1. 手写代码更新图形实现动画2. animation模块动画2.1 Animation类简介2.2 FuncAnimation动画2.3 ArtistAnimation动画2.4 保存动画3. 常用图形更新函数参考文章一、 简介‎matplotlib的animation模块可以实现高效的动画绘制,并能够保持到gif或者视频文件中。‎matplotlib中的图形,如线条、点、坐标系、柱形图等

2022-01-23 19:16:38 7805 2

原创 Matplotlib系列(六):路径、面片和集合

Matplotlib系列目录文章目录一、 简介二、 思维导图三、 Matplotlib路径、块、集合1. 路径(Path)和块(Patch)1.1 预定义基本图形patch1.1.1 圆形1.1.2 矩形1.1.3 椭圆形1.1.4 圆弧1.1.5 多边形1.1.6 正多边形1.1.7 圆环1.1.8 楔形、扇形1.1.9 阴影1.2 自定义patch和path1.2.1 用预定义path创建patch1.2.3 文本path1.2.4 自定义path1.2.3 path特效1.2.4 path蒙版2.

2022-01-23 14:23:47 2267 3

原创 Matplotlib系列(五):三维绘图

Matplotlib系列目录文章目录一、 简介二、 思维导图三、 Matplotlib三维图形1. 绘制3d图形2. 基本三维图像2.1 3d折线图2.2 3d散点图2.3 3d柱形图2.4 3d火柴图2.5 3d误差图3. 三维曲面3.1 3d网格面3.2 3d曲面3.3 3d非结构化三角网格3.4 3d非结构化网格等值线4. 3d标量矢量场4.1 3d等高线4.2 3d矢量图5. 其他5.1 3d文本5.2 图形旋转5.3 三维体元素参考文章一、 简介‎matplotlib现在已经支持很多

2022-01-22 10:56:03 11158 1

原创 Matplotlib系列(四):二维绘图

Matplotlib系列目录文章目录一、 简介二、 思维导图三、 Matplotlib二维图形1. 基本图形1.1 折线图1.2 散点图1.3 柱状图1.4 饼图1.5 火柴图1.6 曲线填充图1.7 面积图2. 辅助直线2.1 直线2.2 一组直线2.3 填充线3. 二维标量场3.1 imshow3.2 pcolor3.3 contour、contourf等值线4. 二维矢量场4.1 quiver箭头(速度)图4.1 streamplot流线图5. 统计绘图5.1 直方图5.2 hist2d二维直方图

2022-01-19 18:00:56 10631

原创 Matplotlib系列(三):坐标轴变换及注释

文章目录一、 简介二、 思维导图三、 坐标轴变换及注释1. 坐标轴变换1.1 极坐标系1.2 对数坐标系1.3 地图坐标系1.4 坐标轴双坐标2. 注释2.1 引线标注2.2 文本2.3 箭头2.4 表格2.5 公式一、 简介‎matplotlib有强大的变换功能,并提供了预定义的极坐标、对数坐标等坐标系。‎matplotlib还有丰富的文本和箭头注释功能,可以方便的在指定位置添加注释,并且注释文本支持latex公式。Matplotlib系列将Matplotlib的知识和重点API,编制成思维导

2022-01-14 22:00:14 4440

原创 Matplotlib系列(二):设置、样式及颜色风格

文章目录简介思维导图Matplotlib样式设置及注释文本1. rcParams配置1.1 配置字典rcParams和配置文件1.2 获取配置1.3 修改配置1.4 配置文件1.5 常用配置选项2. 样式表StyleSheet2.1 使用样式的方法2.2 预定义样式2.3 自定义样式3. ColorMap颜色风格3.1 ColorMap用法3.2 内置ColorMap简介参考资料简介Matplotlib提供了非常强大的自定义配置接口和文本标注功能。Matplotlib提供了三种方式自定义配置。统一

2022-01-11 23:06:37 3365

原创 Matplotlib系列(一):快速绘图入门

文章目录一、 简介二、 思维导图三、 Matplotlib快速绘图1. 两种绘图方式1.1 过程式绘图1.2 面向对象绘图2. matplotlib绘图对象层次组成3. Matplotlib面向对象绘图过程3.1 典型代码示例3.2 创建画布3.3 创建图表3.4 绘制图形(包含设置点、线样式、颜色)3.4.1 点、线样式,颜色参数3.4.2 颜色参数取值1) 基本颜色简写2) 颜色名称3) 灰度数值4)十六进制RGB字符串5)RGB,RGBA元组6)C0,C1,...CN字符串3.4.3 线样式参数取值3

2022-01-10 13:14:41 4013

原创 Matplotlib系列目录

Matplotlib简介Matplotlib是一个可视化绘图库。可以使用这个库轻松地完成线形图、直方图、条形图、误差图或散点图等操作,设置标签、图例、调整绘图大小等。是python中使用最广的绘图库。有很多库(如pandas,seaborn)的绘图功能都是基于matplotlib实现的。Numpy,Pandas,Matplotlib被称为Python数据分析三大支柱。Matplotlib系列目录Matplotlib系列(一):快速绘图入门[Matplotlib系列(二):图形操作、样式及设置

2022-01-10 13:00:45 1995

原创 Pandas系列(五):可视化绘图

文章目录一、 简介二、 思维导图三、 Pandas可视化绘图1. Pandas绘图基本方法2. plot模块2.1 简单图表2.1.1 绘图函数2.1.2 进阶用法2.2 统计绘图3. plot函数4. Series和DataFrame两个特殊绘图函数5. 通用图形控制参数5.1 图形属性一、 简介Pandas数据提供了方便的绘图函数,可以直接调用绘图。不仅包括常用的点、线、柱形图、饼图,还包括直方图、核密度曲线图等统计图形。Pandas的绘图函数基于Matplotlib。Pandas系列将

2022-01-08 15:28:20 3223

原创 Pandas系列(四):数据处理

文章目录一、 简介二、 思维导图三、 Pandas数据处理1. 排序2. 数据整理2.1 数据重塑2.1.1 改变形状2.1.2 合并拼接2.1.3 数据透视3. 分组、聚合及窗口函数3.1 分组3.2 聚合3.3 窗口函数3.4 上下限规整3. 函数应用3.1 transform(对每个元素执行函数)3.2 apply(沿行或列执行函数)3.3 map(只能对Series执行函数)3.4 applymap(只能对DataFrame执行函数)3.5 pipe(运算时可以指定参数)3.6 eval4. 统计4

2022-01-07 16:14:30 1087 1

原创 Pandas系列(三):数据清洗

文章目录一、 简介二、 思维导图三、 Pandas数据清洗1. 空值、缺失值处理1.1 空值、缺失值判断1.2 空值处理2. 异常数据替换2.1 条件替换2.2 replace函数替换3. 重复值处理4. 字符串处理5. 标签修改6. 数据标准化7. 数据转换操作一、 简介数据清洗主要是对空值、重复值、异常值进行处理;对数据标签进行整理;数据类型进行转换;以及数据标准化处理等。Pandas系列将Pandas的知识和重点API,编制成思维导图和重点笔记形式,方便记忆和回顾,也方便应用时参考,初学者也

2022-01-07 12:30:54 3816

原创 Pandas系列(二):IO和常用操作

文章目录一、 简介二、 思维导图三、 Pandas IO和常用操作1. IO1.1 csv读写1.2 excel读写1.3 json读写1.5 Pickling读写1.6 SQL读写1.7 html读写1.8 Latex读写2 查看数据2.1 数据检查2.2 时间过滤2.3 简单判断2.4 筛选过滤3 基本运算函数3.1 pandas广播原则3.2 数学运算3.3 布尔运算4 非数值数据处理4.1 字符串方法(Series)4.2 时间数据方法(Series)5 方法链一、 简介Pandas支持多种格

2021-12-31 23:11:57 2133

原创 Pandas系列(一):数据结构(Series、DataFrame、时间序列)

文章目录一、 简介二、 思维导图三、 Pandas数据结构1. Series1.1 简介1.2 创建Series1.3 Series属性1.4 索引切片1.4.1 索引1.4.2 切片1.4.3 列表索引1.4.4 条件表达式布尔列表索引1.5 循环访问2. DataFrame2.1 简介2.2 创建2.3 属性2.4 索引切片2.4.1 列2.4.2 行2.4.3 行列同时访问2.5 循环访问2.6 行列增删2.6.1 列2.6.2 行2.7 指定标签列3. 时间序列3.1 时间点3.2.1 创建Time

2021-12-27 19:39:28 2342

原创 Pandas系列目录

Pandas简介Pandas(Panel Data)是基于NumPy的数据分析库。它包含许多库和一些标准的数据模型,提供了高效地操作大型数据集所需的方法,并且提供了大量能使我们快速便捷地处理数据的内置函数。Pandas可以从各种文件格式比如 CSV、JSON、SQL导入数据。可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。被广泛应用在学术、金融、统计学等各个数据分析领域。Pandas的核心为两种数据结构和操作:Series:带索引的一维数组,与Numpy中的一维ar

2021-12-27 19:31:21 2073

原创 Numpy系列(八):函数库之5傅里叶变换函数

文章目录一、 Numpy快速傅里叶变换二、 思维导图三、 函数简介1 基本概念1.1 傅里叶级数1.2 复数形式傅里叶级数1.3 傅里叶变换1.4 离散傅里叶变换2. 标准FFT2.1 一维离散FFT2.2 一维离散FFT反变换2.3 二维离散FFT2.4 二维离散FFT逆转换2.5 多维离散FFT3. 实数FFT4. 工具函数4.1 频谱频率坐标计算函数fftfreq4.2 实数频谱频率坐标计算函数rfftfreq4.3 移动频率顺序一、 Numpy快速傅里叶变换二、 思维导图三、 函数简介1

2021-12-22 21:09:00 8080 5

原创 Numpy系列(七):函数库之4线性代数

文章目录一、 Numpy线性代数二、 思维导图三、 函数简介1 矩阵和向量乘1.1 矩阵乘法1.2 内积外积1.3 点积1.4 向量叉乘1.5 张量积2 分解2.1 Cholesky分解2.2 QR(正交三角)分解2.3 SVD奇异值分解3 特征值3.1 方阵特征值和右特征向量3.2 Hermitian矩阵的特征值和特征向量3.3 方阵特征值(只求特征值)4. 范数等4.1 对角矩阵,矩阵的迹4.2 求方阵的行列式4.3 范数4.4 条件数4.5 矩阵的秩5 逆矩阵和解方程5.1 逆矩阵5.2 解方程6

2021-12-22 21:02:36 1389

原创 Numpy系列(六):函数库之3统计函数

文章目录一、 Numpy统计函数二、 思维导图三、 函数简介1 顺序统计2 均值和方差2.1 均值2.2 方差2.3 标准差3 相关关系3.1 协方差3.2 皮尔逊相关系数3.3 信号互相关4 直方图4.1 一维直方图4.2 二维直方图4.3 多维直方图4.4 计算元素所在区间一、 Numpy统计函数NumPy提供了很多统计函数,用于从数组中查找中位数,百分位数,标准差和方差,协方差,相关系数,以及直方图统计等等。二、 思维导图三、 函数简介1 顺序统计np.ptp(a,axis=None

2021-12-19 15:12:44 833

原创 Numpy系列(五):函数库之2随机数及概率分布

文章目录一、 Numpy随机数及概率分布二、 思维导图三、 函数简介1. 随机数1.1 api版本说明1.2 简单随机数1.3 设置随机种子生成相同随机数1.4 排列组合2. 随机抽样2.1 离散概率分布2.1.1 常见离散分布简介2.1.2 伯努利分布2.1.3 二项分布2.1.4 几何分布2.1.5 泊松分布2.2 连续概率分布2.2.1 均匀分布2.2.2 指数分布2.2.3 正态分布2.2.4 对数正态分布2.2.5 伽玛分布2.2.6 瑞利分布2.2.7 韦伯分布2.2.8 贝塔分布2.2.9 狄

2021-12-19 14:32:56 2104

原创 Numpy系列(四):函数库之1基础数学函数

文章目录一、 Numpy基础数学函数二、 思维导图三、 函数简介1. 基本函数1.1 最大最小1.2 四舍五入1.3 排序查找计数1.4 公约数、公倍数1.5 其他简单函数2. 和差积(和简单 四则运算有差别)2.1 和2.2 差2.3 积2.4 叉乘2.5 梯度3 指数对数3.1 指数3.2 对数4 三角函数4.1 角度转换4.2 三角函数4.3 反三角函数4.4 三角形斜边长度5 双曲函数5.1 双曲函数5.2 反双曲函数6 复数运算6.1 获取实部虚部6.2 获取复数角度6.3 共轭一、 Numpy

2021-12-19 09:50:16 1243 1

原创 Numpy系列(三):函数库

1. Numpy常用函数库除了基本的数学、逻辑运算,Numpy数组内置了很多函数库,常用的主要有:基础数学函数随机数及概率函数统计函数线性代数函数傅里叶变换2. 思维导图个人总结,部分内容进行了简单的处理和归纳,如有谬误,希望大家指出,持续修订更新中。修订历史版本见:https://github.com/hustlei/AI_Learning_MindMap...

2021-12-18 21:58:49 629

原创 Numpy系列(二):数组函数ufunc

文章目录1. Numpy数组函数ufunc简介2. 思维导图3. 基本运算3.1 四则运算3.2 比较运算3.3 布尔运算3.4 位运算4. 自定义ufunc5. ufunc广播5.1 广播的步骤及条件5.2 创建可广播数组5.2.1 ogrid5.2.2 一维数组手工创建可广播数组5.2.3 创建广播后的数组6. ufunc的方法6.1 reduce6.2 accumulate6.2 outer7. ufunc广播特例行向量和列向量自动广播创建可广播数组根据范围创建广播后数组outer方法模拟向量广播1

2021-12-18 13:43:37 1508

原创 Numpy系列(一):数组ndarray

Numpy中所有功能都是基于N维数组数据结构**ndarray**的。ndarray是**同类型数据**的集合,以 0 下标为开始进行元素的索引。不同于python的List,ndarray中的每个元素在内存中都有相同存储大小的区域。

2021-12-17 22:17:22 1380

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除