数据结构 时间复杂度和空间复杂度

 前言

需要几个数学公式:等差等比的数列求和公式和指数对数转换的公式。知道二分查找,递归,冒泡的思想。


一、1.时间复杂度是什么?

        算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

         实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

2.空间复杂度是什么?

        空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度
        空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数运行时候显式申请的额外空间来确定。

二、大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数
2、在修改后的运行次数函数中,只保留最高阶项
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


下面是一些计算时间复杂度的例子:

Func1

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

Func1 执行的基本操作次数 :
    N = 10          F(N) = 130
    N = 100          F(N) = 10210
    N = 1000          F(N) = 1002010
   公式:F(N)=N^{2}+2*N+10

Func1的时间复杂度为O(N^{2})。

Func2

// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

Func2 执行的基本操作次数 :

N = 10          F(N) = 30
N = 100          F(N) = 210
N = 1000          F(N) = 2010

Func2的时间复杂度为O(N)。

因为去掉常数M和最高阶的系数2所以是N。

Func3
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

Func3 执行的基本操作次数 :100次

Func3的时间复杂度为O(1)。

因为是常数次100所以用大O渐进表示法为O(1)。

func4

// 计算strchr的时间复杂度 从字符串中找出给定的字符的下标
int strchr(char* str, char character)
{
	int i = 0;
	while (str[i]!='\0')
	{
		if (str[i] == character)
		{
			return i;
		}
		i++;
	}
	return -1;
}

Func4 执行的基本操作次数 :看函数第几次循环能找到给定的字符。有可能第一次就找到也有可能在中间或者最后一个才找到,在实际中一般情况关注的是算法的最坏运行情况。

Func4的时间复杂度为O(N)。

因为最坏情况为最后一个找到所以等于数组的长度为O(N)。

Func5

// 计算冒泡排序的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);//交换两个数的值
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

Func5的时间复杂度为O(N^{2})。

因为有exchange当数组有序后就会跳出循环,

Func5的最好为O(N),即开始就是有序的情况,只执行了外循环n次。

Func5的最坏为O(N^{2})根据冒泡函数的思想每循环一次比较就少一个数,

外循环为n

内循环:

        第1次:n-1

        第2次:n-2

        第3次:n-3

        第n-1次:1

这是一个等差数列求和最后结果去掉最高阶系数和常数项后一定为N^{2}

Func6

// 计算二分查找的时间复杂度?
	int BinarySearch(int* a, int n, int x)
	{
		assert(a);
		int begin = 0;
		int end = n - 1;
		// [begin, end]:begin和end是左闭右闭区间,因此有=号
		while (begin <= end)
		{
			int mid = begin + ((end - begin) >> 1);
			if (a[mid] < x)
				begin = mid + 1;
			else if (a[mid] > x)
				end = mid - 1;
			else
				return mid;
		}
		return -1;
	}

Func6的时间复杂度为O(\log_{2}{N})。

因为每次查询都会筛掉一半的数据,设一共有N个数,查找了X次,即N/2/2/2...../2=1。

N=2^{X},x=\log_{2}{N}

想不明白可以拿纸对折一下。

Func7

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    return Fac(N-1)*N;
}

Func7的时间复杂度为O(N)。

F(N)-->F(N-1)-->F(N-2)-->.........F(I)-->F(0),每次执行的都是常数次,共执行了N次。

Func8

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

Func8的时间复杂度为O(2^{N})。

最左边这一组至少会执行完整,其他的可能会提前返回,根据下图可知是一个等比数列求和。

下面是一些计算空间复杂度的例子:

Func1
	// 计算BubbleSort的空间复杂度?
	void BubbleSort(int* a, int n)
	{
			assert(a);
		for (size_t end = n; end > 0; --end)
		{
			int exchange = 0;
			for (size_t i = 1; i < end; ++i)
			{
				if (a[i - 1] > a[i])
				{
					Swap(&a[i - 1], &a[i]);
					exchange = 1;
				}
			}
			if (exchange == 0)
				break;
		}
	}

Func1的空间复杂度是O(1)。

只创建了3个临时占用存储空间变量end,exchange,i。常数个变量根据大o渐进表示法可知为O(1)。

Func2
    // 计算Fibonacci的空间复杂度?
	// 返回斐波那契数列的前n项
	long long* Fibonacci(size_t n)
	{
		if (n == 0)
			return NULL;
		long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
		fibArray[0] = 0;
		fibArray[1] = 1;
		for (int i = 2; i <= n; ++i)
		{
			fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
		}
		return fibArray;
	}

Func2的空间复杂度是O(n)。

Func2malloc了n+1个运行过程中临时占用存储空间的变量,n+1个变量根据大o渐进表示法可知为O(n)。

Func3
	// 计算阶乘递归Fac的空间复杂度?
	long long Fac(size_t N)
	{
		if (N == 0)
			return 1;
		return Fac(N - 1) * N;
	}

Func3中每次递归调用都会创建一个空间,递归N+1次总共的空间复杂度为O(n)。

时间复杂度例图

具体的感觉时间复杂度的重要性

如果有错误请在评论区指出,非常感谢您的观看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值