目录
题目链接:105. 七夕祭 - AcWing题库
题目描述
七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。
于是 TYVJ 今年举办了一次线下七夕祭。
Vani 同学今年成功邀请到了 cl 同学陪他来共度七夕,于是他们决定去 TYVJ 七夕祭游玩。
TYVJ 七夕祭和 11 区的夏祭的形式很像。
矩形的祭典会场由 NN 排 MM 列共计 N×M 个摊点组成。
虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。
Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。
不过 zhq 告诉 Vani,摊点已经随意布置完毕了,如果想满足 cl 的要求,唯一的调整方式就是交换两个相邻的摊点。
两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。
由于 zhq 率领的 TYVJ 开发小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。
现在 Vani 想知道他的两个要求最多能满足多少个。
在此前提下,至少需要交换多少次摊点。
输入格式
第一行包含三个整数 N 和 M 和 T,T 表示 cl 对多少个摊点感兴趣。
接下来 TT 行,每行两个整数 x,y,表示 cl 对处在第 x 行第 y 列的摊点感兴趣。
输出格式
首先输出一个字符串。
如果能满足 Vani 的全部两个要求,输出 both;
如果通过调整只能使得各行中 cl 感兴趣的摊点数一样多,输出 row;
如果只能使各列中 cl 感兴趣的摊点数一样多,输出 column;
如果均不能满足,输出 impossible。
如果输出的字符串不是 impossible, 接下来输出最小交换次数,与字符串之间用一个空格隔开。
数据范围
1≤N,M≤100000
0≤T≤min(N∗M,100000)
1≤x≤N,
1≤y≤M
样例描述
输入样例:
2 3 4
1 3
2 1
2 2
2 3
输出样例:
row 1
题目解析
在这道题目中,我们发现行和列分别交换的过程中其实没有任何交际,就是说我们可以分开看行和列的交换。先拿行来举例,设总共有n行,第i行的摊点数分别为a[i],再假设第i行给了第i-1行c[i]个(第1行给第n行),s为总的平均数,我们就有以下关系:
我们要求的是C1的绝对值加到Cn的绝对值,所以就有以下等式:
上式中用了绝对值不等式。我们也可以采用区间方式来解释绝对值不等式。
代码
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
LL row[N],col[N],s[N],c[N];
int n,m,t;
LL work(LL q[],int n){
for(int i=1;i<=n;i++) s[i]=s[i-1]+q[i];
if(s[n]%n) return -1;
int avg = s[n]/n;
c[1]=0;
for(int i=2;i<=n;i++) c[i]=s[i-1]-(i-1)*avg;
sort(c+1,c+n+1);
LL res=0;
for(int i=1;i<=n;i++) res+=abs(c[i]-c[(n+1)/2]);
return res;
}
int main()
{
cin>>n>>m>>t;
for(int i=0;i<t;i++){
int a,b;
cin>>a>>b;
row[a]++,col[b]++;
}
LL r = work(row,n);
LL c = work(col,m);
if(r==-1 && c==-1) cout<<"impossible"<<endl;
else if(r==-1 && c!=-1) cout<<"column "<<c<<endl;
else if(r!=-1 && c==-1) cout<<"row "<<r<<endl;
else cout<<"both "<<r+c<<endl;
return 0;
}
也可在求res这一步改变一下思路
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
LL row[N],col[N],s[N],c[N];
int n,m,t;
LL work(LL q[],int n){
for(int i=1;i<=n;i++) s[i]=s[i-1]+q[i];
if(s[n]%n){
//cout<<"---"<<s[n]<<" "<<n<<" "<<s[n]%n<<endl;
return -1;
}
int avg = s[n]/n;
c[1]=0;
for(int i=2;i<=n;i++) c[i]=s[i-1]-(i-1)*avg;
sort(c+1,c+n+1);
LL res=0;
int i=1,j=n;
while(i<j) res+=abs(c[i++]-c[j--]);
return res;
}
int main()
{
cin>>n>>m>>t;
for(int j=0;j<t;j++){
int a,b;
cin>>a>>b;
row[a]++,col[b]++;
}
LL r = work(row,n);
LL c = work(col,m);
if(r==-1 && c==-1) cout<<"impossible"<<endl;
else if(r!=-1 && c==-1) cout<<"row "<<r<<endl;
else if(r==-1 && c!=-1) cout<<"column "<<c<<endl;
else cout<<"both "<<r+c<<endl;
return 0;
}
这也是求绝对值不等式的两种做法。