七夕祭问题

目录

题目描述

样例描述

题目解析

 代码


题目链接:105. 七夕祭 - AcWing题库

题目描述

七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。

于是 TYVJ 今年举办了一次线下七夕祭。

Vani 同学今年成功邀请到了 cl 同学陪他来共度七夕,于是他们决定去 TYVJ 七夕祭游玩。

TYVJ 七夕祭和 11 区的夏祭的形式很像。

矩形的祭典会场由 NN 排 MM 列共计 N×M 个摊点组成。

虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。

Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。

不过 zhq 告诉 Vani,摊点已经随意布置完毕了,如果想满足 cl 的要求,唯一的调整方式就是交换两个相邻的摊点。

两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。

由于 zhq 率领的 TYVJ 开发小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。

现在 Vani 想知道他的两个要求最多能满足多少个。

在此前提下,至少需要交换多少次摊点。

输入格式

第一行包含三个整数 N 和 M 和 T,T 表示 cl 对多少个摊点感兴趣。

接下来 TT 行,每行两个整数 x,y,表示 cl 对处在第 x 行第 y 列的摊点感兴趣。

输出格式

首先输出一个字符串。

如果能满足 Vani 的全部两个要求,输出 both;

如果通过调整只能使得各行中 cl 感兴趣的摊点数一样多,输出 row;

如果只能使各列中 cl 感兴趣的摊点数一样多,输出 column;

如果均不能满足,输出 impossible。

如果输出的字符串不是 impossible, 接下来输出最小交换次数,与字符串之间用一个空格隔开。

数据范围

1≤N,M≤100000
0≤T≤min(N∗M,100000)
1≤x≤N,
1≤y≤M

样例描述

输入样例:

2 3 4
1 3
2 1
2 2
2 3

输出样例:

row 1

题目解析

在这道题目中,我们发现行和列分别交换的过程中其实没有任何交际,就是说我们可以分开看行和列的交换。先拿行来举例,设总共有n行,第i行的摊点数分别为a[i],再假设第i行给了第i-1行c[i]个(第1行给第n行),s为总的平均数,我们就有以下关系:

我们要求的是C1的绝对值加到Cn的绝对值,所以就有以下等式:

 上式中用了绝对值不等式。我们也可以采用区间方式来解释绝对值不等式。

 代码

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

const int N = 1e5+10;
LL row[N],col[N],s[N],c[N];

int n,m,t;

LL work(LL q[],int n){
    for(int i=1;i<=n;i++) s[i]=s[i-1]+q[i];
    if(s[n]%n) return -1;
    int avg = s[n]/n;
    c[1]=0;
    for(int i=2;i<=n;i++) c[i]=s[i-1]-(i-1)*avg;
    sort(c+1,c+n+1);
    LL res=0;
    for(int i=1;i<=n;i++) res+=abs(c[i]-c[(n+1)/2]);
    return res;
}

int main()
{
    cin>>n>>m>>t;
    for(int i=0;i<t;i++){
        int a,b;
        cin>>a>>b;
        row[a]++,col[b]++;
    }
    
    LL r = work(row,n);
    LL c = work(col,m);
    
    if(r==-1 && c==-1) cout<<"impossible"<<endl;
    else if(r==-1 && c!=-1) cout<<"column "<<c<<endl;
    else if(r!=-1 && c==-1) cout<<"row "<<r<<endl;
    else cout<<"both "<<r+c<<endl;
    
    return 0;
}

也可在求res这一步改变一下思路

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

const int N = 1e5+10;

LL row[N],col[N],s[N],c[N];
int n,m,t;

LL work(LL q[],int n){
    for(int i=1;i<=n;i++) s[i]=s[i-1]+q[i];
    if(s[n]%n){
        //cout<<"---"<<s[n]<<" "<<n<<" "<<s[n]%n<<endl;
        return -1;
    }
    int avg = s[n]/n;
    
    c[1]=0;
    for(int i=2;i<=n;i++) c[i]=s[i-1]-(i-1)*avg;
    
    sort(c+1,c+n+1);
    LL res=0;
    int i=1,j=n;
    while(i<j) res+=abs(c[i++]-c[j--]);
    return res;
}

int main()
{
    cin>>n>>m>>t;
    for(int j=0;j<t;j++){
        int a,b;
        cin>>a>>b;
        row[a]++,col[b]++;
    }
    
    LL r = work(row,n);
    LL c = work(col,m);
    
    if(r==-1 && c==-1) cout<<"impossible"<<endl;
    else if(r!=-1 && c==-1) cout<<"row "<<r<<endl;
    else if(r==-1 && c!=-1) cout<<"column "<<c<<endl;
    else cout<<"both "<<r+c<<endl;
    
    return 0;
}

这也是求绝对值不等式的两种做法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值