自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(158)
  • 收藏
  • 关注

原创 深度介绍:Moltbot(原名Clawdbot)

Moltbot是一款能操作电脑的开源AI智能体,通过自然语言接受指令后,可自主执行信息整理、跨平台通信、内容创作等任务。你可通过本地部署与消息App交互,或选择云服务套餐快速使用。搭建时需重点配置AI模型大脑与消息通道,并务必严守本地运行、强认证等安全准则,防范未授权访问风险。

2026-01-29 10:51:44 63

原创 深度讲解AI Skills:从概念到实践

AISkills(AI技能)是模块化、可组合的AI功能单元,专注于完成特定任务。它具有专业化、可组合性、接口标准化和上下文感知等特点,区别于传统AI模型。AISkills可应用于内容创作、数据分析、客户服务、开发运维和业务流程自动化等多个领域。使用方式包括调用现有平台API或集成到现有系统。搭建AISkills需要经过需求分析、技术选型、技能开发、测试评估和部署监控五个步骤,遵循单一职责、接口标准化等设计原则。未来发展趋势包括技能标准化、自主智能体和多模态融合等。掌握AISkills开发能力对企业智能化转型

2026-01-29 10:48:07 135

原创 CrewAI vs LangGraph:多智能体框架的本质区别与协同之道

CrewAI与LangGraph是两种多智能体系统架构,定位与设计差异显著。CrewAI以角色驱动为核心,模拟人类团队协作,通过自然语言对话实现智能体间的自主沟通与任务分配,适合快速原型开发及高响应场景(如客服)。LangGraph则基于图结构,强调流程控制与状态管理,支持复杂分支与循环逻辑,适用于需精确规则和持久化状态的场景(如审批流程)。两者互补性强,可结合使用:LangGraph管理全局流程,CrewAI处理局部协作,兼顾灵活性与可控性。选择时,CrewAI适合团队协作型任务,LangGrap

2025-11-26 18:25:58 906

原创 深度解析 LangGraph:定义、用处、场景与核心效果

LangGraph是LangChain团队开源的图结构工作流编排框架,通过"节点+边+全局状态"的三元组合,解决复杂场景下的流程控制问题。它将执行逻辑封装为节点,用边定义流转规则(顺序/条件/循环),以全局状态实现数据共享,支持动态决策、多角色协同等需求。相比传统线性工作流,LangGraph具有四大优势:可视化编排替代硬编码、全局状态管理消除数据孤岛、支持循环迭代优化、规范多角色协作流程。典型应用场景包括复杂RAG系统、多智能体协同、业务流程自动化、连续决策控制等,能显著提升任务效率、

2025-11-26 18:11:35 1072

原创 Gemini 2.5 Flash Image:以“角色一致性”重塑AI图像编辑

谷歌DeepMind于2025年8月推出AI图像生成模型Gemini2.5FlashImage(代号NanoBanana),突破性地解决了图像一致性、精准编辑等核心痛点。该模型具备角色特征稳定保持、自然语言指令精确修改、多图智能融合等功能,以每张图约0.039美元的低成本提供服务。其技术突破已应用于品牌营销、创意设计等领域,并引发行业应用集成热潮。谷歌同时设置了安全防护机制应对潜在风险,推动AI图像技术向实用化阶段发展。

2025-10-30 17:44:28 1090

原创 ​​SRE Agent 详解:下一代智能运维的核心

SREAgent(站点可靠性工程智能体)是集AI与大语言模型的智能运维工具,可自动执行监控告警、故障诊断、修复优化等任务。主流方案包括微软Azure、亚马逊云科技及字节跳动的实践应用,均具备7x24监控、告警降噪、根因分析和资源优化能力。其技术架构含智能体底座、核心功能层及运维场景层,采用多智能体协作或集成平台实现路径。发展趋势强调与现有工具链集成、人机协同及行业标准遵循,旨在释放工程师50%值班时间,聚焦高价值工作。(150字)

2025-10-30 17:30:40 1589

原创 AGENT 和自动化工作流的区別

智能体(Agent)与自动化工作流(Workflow)的核心差异在于:智能体是目标驱动的自主决策系统,具有高灵活性和实时推理能力,适合处理不确定性的复杂任务;而工作流是规则驱动的固定流程,稳定性强但灵活性低,适合标准化重复性任务。未来趋势是二者融合,形成"工作流为骨架、智能体为大脑"的混合架构,兼顾流程可控性与智能决策能力。选择时应根据任务特性:规则明确选工作流,需灵活判断则用智能体。

2025-10-28 17:14:12 554

原创 [特殊字符] 全面解析n8n:开源工作流自动化神器

n8n是一款开源可视化工作流自动化工具,采用节点连接方式实现应用集成。核心特点包括:完全开源自托管、支持2000+服务连接、内置AI功能、可视化与代码扩展结合。提供Docker/NPM/云服务多种部署方案,适合从简单监控到企业级AI处理的各类自动化场景。通过表达式引擎和逻辑控制可构建复杂流程,典型应用包括数据同步、定时报告、智能通知等。其公平代码分发模式与强大扩展性,使其成为连接传统系统与现代AI服务的理想枢纽。

2025-10-28 15:28:06 707

原创 MD5算法深度解析:从原理到实战应用

本文深入解析MD5哈希算法的发展历程与技术细节。MD5作为MD算法家族的第五代产品,诞生于1992年,在预处理、四轮循环运算等环节具有独特设计。文章通过具体案例展示了MD5的雪崩效应和碰撞攻击原理,揭示了其安全性缺陷。虽然MD5在文件校验等非安全领域仍有应用,但已不适用于密码存储等高安全场景。作者建议迁移至SHA-256等现代算法,并提供了代码示例和安全实践指南。文章既是对经典算法的技术剖析,也是对密码学发展的思考,为读者理解哈希算法提供了全面视角。

2025-10-27 16:43:00 1345

原创 ResNet:深度残差网络全面解析

ResNet(残差网络)是深度学习领域的里程碑式突破,由微软研究院团队于2015年提出。其核心创新在于残差学习机制,通过引入快捷连接让网络学习残差函数而非直接映射,有效解决了极深神经网络的梯度消失和退化问题。这种设计使构建数百层的深度网络成为可能,显著提升了模型性能。ResNet不仅斩获多项图像识别比赛冠军,其残差思想更成为现代网络架构的标准组件,广泛应用于计算机视觉各领域,并延伸到NLP等其他方向。该架构以简洁优雅的设计,奠定了深度学习发展的重要基础。

2025-10-21 16:03:04 1428

原创 上下文工程(Context Engineering):大模型时代的下一个前沿技术框架

本文探讨了上下文工程(Context Engineering)这一新兴概念,它作为提示词工程的进阶,专注于系统化设计和优化大语言模型的完整信息生态系统。文章分析了上下文工程的产生背景、技术挑战(如计算瓶颈、模型可靠性问题)及核心方法(检索、压缩、隔离等策略),并对比了其与提示词工程在关注点、工作方式和应用场景上的差异。上下文工程在AI智能体、企业级应用等复杂场景中展现出重要价值,未来将向动态化、多元化和自主化方向发展。该技术有望推动AI系统从单次交互工具进化为具备情境理解能力的智能伙伴。

2025-10-21 11:37:49 932

原创 Metabase 和帆软 BI之间的区别

​​Metabase​​ 更像一把​​轻便灵巧的瑞士军刀​​,适合技术团队和业务人员快速上手,进行探索性和敏捷性的数据分析,尤其在开源和成本控制方面有吸引力。​​帆软 BI​​ 则更像一套​​功能强大的专业厨房​​,为企业提供全面、稳定、安全的一站式数据分析和报表解决方案,特别适合处理复杂固定的报表需求和对性能、安全及行业适配有高要求的场景。

2025-10-16 17:22:39 301

原创 LabelImg介绍以及安装

LabelImg是一款开源的图像标注工具,专为目标检测任务设计。它支持手动绘制边界框并添加标签,可导出PascalVOC、YOLO等格式。工具界面直观,提供快捷键操作,适合自动驾驶、医疗影像等多个领域。通过pip安装(pip install labelimg),支持预定义类别列表提高效率。虽然大规模数据集标注效率有限,但其免费开源特性使其成为中小规模项目的理想选择。注意避免中文路径安装,确保标注准确性以获得最佳模型训练效果。

2025-10-16 11:47:28 332

原创 Labelme介绍及安装

Labelme是一款基于Python和Qt的开源图像标注工具,支持多边形、矩形等多种标注类型,适用于目标检测、图像分割等计算机视觉任务。它能生成PASCAL VOC和COCO格式数据集,支持视频标注和跨平台运行。安装简单,通过pip即可完成,使用图形界面交互式标注后保存为JSON文件,并可转换为可视化格式。广泛应用于学术研究和项目开发,是创建自定义数据集的理想工具。

2025-10-16 11:43:38 362

原创 讲解联邦数据库系统

联邦数据库系统(FDBS)是一种集成多个异构数据库的软件系统,提供统一访问接口,实现"逻辑集成,物理分布"的目标。其核心特性包括访问透明性、组件自治性和异构性处理能力。系统架构由组件数据库、联邦模式、映射器和查询处理器等组成。分为紧耦合和松耦合两种类型,各具特点。优势在于集成既有投资、减少数据冗余,但面临查询性能、事务管理等挑战。与现代数据集成方案相比,FDBS采用"查询时集成"方式,适用于需要整合既有数据库且要求组件自治的场景。

2025-10-16 11:07:23 820

原创 R语言学习

R语言是一种专注于统计分析和数据可视化的开源编程语言,由新西兰学者于1993年开发。它具有强大的统计计算能力、丰富的可视化工具(如ggplot2)和超过2万个扩展包,支持从基础统计到机器学习的各类分析。核心数据结构包括向量、数据框和矩阵,广泛应用于科研、金融、生物信息等领域。相比Python,R在统计分析方面更专业但处理大规模数据性能较弱。初学者建议从RStudio入手,掌握数据框操作和可视化技能,通过实际项目巩固学习。Tidyverse生态和RMarkdown报告工具显著提升了R的现代数据分析效率。

2025-10-11 17:45:00 917 2

原创 OCR数据流转

OCR数据流转是指从图像到文本再到业务应用的全过程,包含六个核心阶段:1)输入获取图像;2)预处理优化质量;3)文本检测定位文字区域;4)文本识别转换字符;5)后处理纠错与结构化;6)输出应用到业务系统。该流程通过自动化减少人工录入,广泛应用于金融、物流、身份认证等领域。随着AI技术的发展,OCR精度和智能化水平不断提升,成为连接物理与数字世界的重要桥梁。

2025-10-11 17:37:10 705

原创 Async/Await终极指南:解锁Python高性能并发编程,避坑IO密集型场景!——深入浅出讲解async def用法,附实战代码与场景分析,别再误用CPU密集型!

Python中的asyncdef用于定义异步函数,是异步编程的核心。异步函数通过await调用其他异步操作,适用于IO密集型任务(如网络请求、数据库查询)和高并发场景,能提升效率但不适合CPU密集型计算。调用异步函数需通过事件循环(如asyncio.run())或await,常见于FastAPI等框架。注意避免同步阻塞操作,正确使用await。异步编程可提升IO应用性能,但会增大代码复杂度,需根据场景选择使用。

2025-09-11 15:30:18 620

原创 什么时候用@staticmethod静态方法!!

本文介绍了Python中静态方法(@staticmethod)的使用场景:1. 当方法逻辑仅与输入参数相关,与类/实例无关时(如工具函数);2. 方法语义与类强相关时(如几何计算公式);3. 需要限制方法仅作内部使用时;4. 当既不需要实例属性也不需要类属性时。静态方法的特点是无需self/cls参数,不能访问类/实例属性。与实例方法(需访问对象状态)和类方法(需访问类状态)不同,静态方法适用于独立但语义上属于类的函数。若函数与类完全无关,则应定义为全局函数。

2025-08-23 11:16:51 319

原创 coze和dify核心区别和联系

Coze和Dify是两大AI应用开发平台,核心差异如下:Coze是字节推出的无代码Bot搭建平台,适合非技术人员快速创建对话式应用,依托字节生态但平台依赖性较强;Dify是开源开发框架,支持RAG、LLMOps等企业级功能,技术门槛较高但扩展性强,适合深度定制需求。两者定位互补,Coze侧重轻量级C端应用,Dify专注专业级企业解决方案。选择取决于用户需求——追求零代码快速落地选Coze,需要可控性和定制化则选Dify。

2025-08-23 09:18:09 1355

原创 解释实现哈希值作为唯一的ID以及后面的hexdigest是什么意思

这段代码使用MD5哈希算法生成文档内容的唯一标识。首先将文档内容编码为UTF-8字节序列,然后通过hashlib.md5()计算MD5哈希值,最后用hexdigest()转换为十六进制字符串作为ID。这样即使文档内容微小变化,也会产生完全不同的哈希值,确保ID的唯一性。hexdigest()使二进制哈希结果转为可读的十六进制格式,便于存储和比较。

2025-08-22 19:53:28 270

原创 RAG中稠密向量和稀疏向量

本文对比了稀疏向量与稠密向量的特点及其在RAG(检索增强生成)中的应用。稀疏向量(如BM25)通过高维稀疏表示实现精确关键词匹配,但缺乏语义理解;稠密向量(如BERT嵌入)则通过低维稠密编码捕捉语义相似性。在RAG中,稠密向量因其强大的语义理解能力成为核心检索机制,而稀疏向量作为补充处理精确匹配需求。当前趋势是采用混合检索策略,结合两者优势:通过算法(如RRF)融合语义相关性和关键词匹配结果,显著提升检索效果。最终,稠密向量承担主要语义理解功能,但混合检索正成为最优解决方案。

2025-08-22 19:39:02 1101

原创 什么是哈希值(hash value)???

摘要:哈希值是通过哈希函数生成的固定长度数字指纹,具有确定性、单向性、雪崩效应和抗碰撞性等核心特性。它广泛应用于数据校验(如软件完整性验证)、快速查找(哈希表)、密码存储、数字签名、区块链及去重识别等领域。常见算法包括MD5(已不安全)、SHA-256(主流安全算法)等。哈希值能敏感反映输入变化,如"Hello"与"hello"的哈希完全不同,是保障数据安全与高效处理的重要技术基础。

2025-08-22 18:26:24 2137 1

原创 BM25 系列检索算法

BM25系列检索算法解析:BM25是基础算法,通过词频饱和和文档长度归一化实现稳健检索;BM25L减轻对长文档的惩罚;BM25+提升短文档得分;BM25Okapi是标准实现版本。这些变体针对不同场景优化,形成完整的信息检索解决方案。

2025-08-20 19:53:03 660

原创 加权排名策略

加权排名策略通过为不同因素分配权重,结合标准化处理和加权计算,实现多维度数据排序。其核心步骤包括:确定因素、分配权重、标准化处理、计算加权得分和最终排序。广泛应用于搜索引擎、产品推荐和评分系统等场景,能有效综合多指标数据进行科学排序。

2025-08-20 15:32:44 714

原创 Milvus 安装和启动指南

Milvus是一个高性能开源向量数据库,支持多种安装方式。Docker安装最为便捷,通过拉取官方镜像并使用docker-compose启动服务;源码安装适合开发者,需预先安装Go、CMake等工具;二进制文件安装则直接下载预编译版本运行。所有方法启动后均可通过19530端口或Web界面验证服务状态。安装过程中需注意端口配置和依赖服务检查,常见问题包括端口冲突和依赖服务未启动等。

2025-08-19 21:20:43 1640

原创 Milvus 向量数据库中的索引类型

Milvus向量数据库提供多种索引类型以适应不同场景需求:FLAT适合小数据集精确搜索;IVF_FLAT用于中等规模数据,在精度和速度间平衡;IVF_SQ8通过8位量化优化大规模数据存储和计算;IVF_PQ结合产品量化技术处理超大规模高维数据;HNSW则适用于需要快速近似搜索的动态数据场景。每种索引类型在存储效率、计算速度和查询精度方面各有侧重,用户可根据具体数据规模和性能需求进行选择。

2025-08-19 19:15:52 688

原创 BM25算法和传统的TF-IDF算法的区别

BM25与TF-IDF是两种文档排序算法。TF-IDF通过词频和逆文档频率的线性组合计算得分,简单但易受高频词和文档长度影响。BM25改进了TF-IDF,引入非线性词频调节(k1)、文档长度归一化(b)和优化IDF公式,使结果更稳健。相比TF-IDF的固定模式,BM25具有参数可调性,能更好处理词频饱和和文档长度偏差,在搜索引擎等复杂检索任务中表现更优。TF-IDF适合简单文本分析,而BM25成为现代检索系统的基准算法。

2025-08-16 20:55:10 804 1

原创 vLLM(Vectorized Large Language Model Serving) 的深度解析

vLLM 是一款针对大语言模型(LLM)推理优化的高性能服务框架,通过 PagedAttention 显存分页管理和 连续批处理 技术,显著提升吞吐量(较传统方案高10-24倍)和显存利用率(达90%+)。其核心创新包括:动态分配KVCache显存块以支持混合序列请求、实时插入新请求的批处理机制,以及多副本权重共享。vLLM 支持快速部署HuggingFace模型,提供量化、多GPU并行等高级功能,适用于高并发在线服务(如客服机器人)、长文本生成(>4K上下文)及多租户场景。局限性在于主要适配

2025-08-14 17:15:29 1032

原创 top-p和top-k核心区别和联系以及应用场景

Top-k和Top-p是两种常见的文本生成采样方法。Top-k固定选择概率最高的前k个词,计算高效但灵活性不足;Top-p动态选择累积概率超过p的最小词集,能自适应分布但计算稍复杂。两者可单独或组合使用,Top-k适合确定性任务(如代码生成),Top-p适用于创造性任务(如诗歌创作)。参数调优需权衡多样性与质量,最新研究趋向自适应动态调整。建议优先使用Top-p,在需要严格控制的场景结合Top-k。

2025-08-14 17:15:21 817

原创 Transformers库中的 Trainer 类 的详细解析

HuggingFace Trainer的核心功能与最佳实践。Trainer提供自动化训练流程,支持分布式训练和主流工具集成。基础使用包括数据准备、模型加载、参数配置和评估指标设置。高级功能涵盖梯度累积、学习率调度、LoRA微调等优化技巧。生产环境配置重点包括分布式训练、显存优化和模型部署方案。文章还提供了问题排查方法及与W&B、MLflow等工具的集成方式。最佳实践强调高效数据加载、训练稳定性和生产就绪方案,帮助开发者快速构建高效的NLP训练流程。

2025-08-14 17:07:24 713

原创 prompttuning方法和ptuningV1和ptuningV2三种方法的核心区别和联系

PromptTuning是一种高效的自然语言处理技术,通过优化输入提示(而非模型参数)来适配下游任务。主要包括硬提示(人工设计)和软提示(可训练向量)两种方式。P-TuningV1通过可训练前缀向量实现任务适配,而P-TuningV2进一步优化任务指令文本,提升灵活性但增加计算量。两者都基于提示优化思想,但P-TuningV2在任务理解能力上更优,适合需要调整任务描述的复杂场景。这些方法显著减少了参数调整量,适用于资源受限环境。

2025-08-09 16:33:00 780

原创 Prompt Tuning的三种方法

本文介绍了三种PromptTuning方法:1)硬提示(HardPrompting):基于人工设计的固定文本提示,简单直接但灵活性差;2)软提示(SoftPrompting):通过训练学习提示向量,灵活性高但需额外计算;3)提示调优(PromptTuning):结合硬提示和软提示的优势,能适应多种任务但复杂度较高。三种方法各具特点,可根据任务需求和资源选择适合的方式,尤其适合少样本或零样本学习场景。

2025-08-09 15:53:25 881

原创 ICL(In-Context Learning)上下文学习方法

ICL(上下文学习)是NLP领域新兴的学习方法,利用预训练模型通过上下文示例直接推理,无需参数更新。其核心是通过提示(如任务说明和示例)引导模型完成任务,适用于零样本/少样本场景。相比传统监督学习,ICL更高效灵活,但依赖上下文质量和模型能力。主要应用于文本生成、分类、翻译等任务,优势在于无需重训练即可快速适配新任务,但存在输出不稳定等局限。典型应用包括通过示例指导模型进行情感分析或问答任务。

2025-08-08 19:51:39 1197

原创 PEFT详解以及PEFT参数高效微调的多种方式

PEFT(参数高效微调)方法通过仅微调少量参数实现大模型适配,显著降低资源消耗。主流技术包括:LoRA(低秩矩阵分解)、PrefixTuning(注意力前缀)、PromptTuning(可学习提示)、Adapter(插入小模块)、QLoRA(量化版LoRA)等。这些方法通过修改注意力机制、输入嵌入或网络结构,在保持预训练权重不变的同时,以1%-10%参数量完成特定任务适配。不同方法在参数量、修改部位和适用场景上各有特点,如LoRA通用性强,PromptTuning极简,QLoRA支持大模型低资源训练。

2025-08-08 16:44:43 770

原创 朴素贝叶斯核心思想以及TF-IDF和朴素贝叶斯配合使用流程

朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的分类算法。其核心思想是通过计算各类别的后验概率进行预测,常用公式为P(y)∏P(xi|y)。该算法在文本分类中表现优异,尤其适合与TF-IDF特征结合使用,处理流程包括文本预处理、TF-IDF向量化、模型训练和评估。主要优点包括实现简单、训练速度快,但存在特征独立性假设过强的问题。常见变种有多项式、伯努利和高斯朴素贝叶斯,适用于不同类型的数据特征。

2025-08-08 14:41:20 829

原创 什么是自回归,自编码

自回归和自编码是两种重要的深度学习模型架构。自回归模型通过历史数据递归预测序列的下一个值,适用于时间序列预测和文本生成等任务,如GPT模型;而自编码器通过编码-解码结构学习数据的低维表示,用于数据压缩、去噪和特征提取等无监督任务。两者的核心区别在于:自回归专注于序列生成,依赖历史输出;自编码则侧重数据重构,通过潜在表示还原输入。自回归生成速度慢且误差会累积,自编码可能存在重构不完整的问题。两者各有所长,适用于不同的应用场景。

2025-08-08 11:40:44 983

原创 PPO和 GRPO

PPO和GRPO是强化学习中两种重要的策略优化算法。PPO通过剪切机制限制策略更新幅度,在保证稳定性的同时提高训练效率,适用于大规模任务。GRPO作为PPO的扩展,引入KL散度约束提供更灵活的策略更新方式,具有更强理论支持,适合复杂环境。两者核心思想相似,但PPO更简洁高效,GRPO则能适应更高要求的优化场景。

2025-08-08 06:59:49 1075

原创 补充:SwiGLU激活函数

SwiGLU是一种改进型激活函数,通过结合线性变换和Sigmoid门控机制,增强了模型的非线性表达能力。相比ReLU和GELU,它能动态控制信息流动,缓解梯度消失问题,在Transformer、NLP等复杂任务中表现优异。但计算开销较大,对超参数敏感,适合高复杂度任务而非简单场景。SwiGLU通过灵活的门控机制提升了深度学习模型的性能,成为处理复杂数据的有力工具。

2025-08-08 00:41:27 1209

原创 Tool Learning的基本概念及应用

工具学习(Tool Learning)是机器学习领域的新兴方向,指智能体通过调用外部工具(如计算器、API、数据库等)来增强任务执行能力。其核心在于学习工具选择、交互和协作策略,主要应用于智能助手、自动化任务和复杂决策系统。关键技术包括工具适配、交互学习和多工具协同,但也面临泛化性、兼容性和效率等挑战。实际应用中已用于搜索引擎优化、自动驾驶规划等领域,展现了扩展AI能力边界的重要潜力。

2025-08-07 20:31:03 716

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除