决策分析法

决策分析法是一种应用于管理学、经济学等领域的决策分析方法,它是一种系统性的方法,可以帮助决策者在面对复杂的决策问题时做出最优决策。

决策分析法包括以下几个步骤:

1. 确定决策目标和范围
2. 收集有关数据和信息
3. 制定决策模型和假设
4. 进行分析和评估
5. 做出最优决策
6. 实施并监控决策的结果

决策是指面临多种方案需要依据一定的标准选择某一种方案。买衣服,质量,颜色价格,款式,等因素。让指标在一个量级。归一化处理。数组【a b c】得到[a/a+b+c b/a+b+c c/a+b+c]

每个指标权重不同 ,每个指标赋值权重

ai j 表示第i个指标相对于第j个指标的重要程度

一致性检验。aij=aik*akj且矩阵各行列成倍数关系 满足这两条的矩阵成为一致性矩阵,不会出现矛盾。eg【124;0.4 1 2;0.25 0.5  1】

算数平均求权重

1)将判断矩阵按照列归一化处理 

2)将归一化各列相加(按行求和)

3)相加的向量除以n; 

一致性检验

%代码一致性检验
%A=[1 2 3 5;0.5 1 0.5 2; 0.33 2 1 0.5; 0.25 0.5  2 1]
%A=[1 2 3 5;0.5 1 0.5 2; 1/3 2 1 2; 0.25 0.5 0.5 1]
A=input('判断矩阵A=');%输入判断矩阵
[n,n]=size(A);%获取A的行列
%求最大特征值和特征向量
[V,D]=eig(A);%V是特征向量 D是特征值构成的对角矩阵
MAX_eig=max(max(D));%先求出每一列最大值,再求出最大值的最大值
CI=(MAX_eig - n)/(n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.49 1.52 1.56 1.58 1.59];
%最多RI=15
%n=2时一定是一致矩阵
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
    disp('因为CR<0.10 判断矩阵A一致性可以接受');
else
    
    disp('因为CR>=0.10 判断矩阵A一致性不可以接受');
end

求权重

%算数平均法求权重
%输入杨丽
%A=[1 2 3 5;0.5 1 0.5 2; 1/3 2 1 2; 0.25 0.5  0.5 1]
A=input('判断矩阵A=');%输入判断矩阵
ASum=sum(A,1);%判断矩阵每列求和
[n,n]=size(A);%获取A的行和列 用于Aasum复制 对应为相除归一化
Ar=repmat(ASum,n,1);%复制Asum n行1列为Ar矩阵
Stand_A=A./Ar;%归一化
ASumr=sum(Stand_A,2);%各列相加同一行;
disp(ASumr/n);%将相加后向量每个元素除以n得到权重想量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值