作为深度学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。
一、概率分布概述
-
共轭意味着它有共轭分布的关系。
-
多分类表示随机方差大于 2。
-
n 次意味着我们也考虑了先验概率 p(x)。
-
为了进一步了解概率,我建议阅读 [pattern recognition and machine learning,Bishop 2006]。
在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en.wikipedia.org/wiki/Conjugate_prior)。
二、分布概率与特征
1. 均匀分布(连续)
均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。
2. 伯努利分布(离散)
-
先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。
-
利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。
3. 二项分布(离散)
-
参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。
-
二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。
4. 多伯努利分布,分类分布(离散)
-
多伯努利称为分类分布。
-
交叉熵和采取负对数的多伯努利分布具有相同的形式。
5. 多项式分布(离散)
多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。
6. β分布(连续)
-
β分布与二项分布和伯努利分布共轭。
-
利用共轭,利用已知的先验分布可以更容易地得到后验分布。
-
当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。
7. Dirichlet 分布(连续)
-
dirichlet 分布与多项式分布是共轭的。
-
如果 k=2,则为β分布。
8. 伽马分布(连续)
-
如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与beta(a,b)相同,则 gamma分布为β分布。
-
指数分布和卡方分布是伽马分布的特例。
9. 指数分布(连续)
指数分布是 α 为 1 时 γ 分布的特例。
10. 高斯分布(连续)
高斯分布是一种非常常见的连续概率分布。
11. 正态分布(连续)
正态分布为标准高斯分布,平均值为 0,标准差为 1。
12. 卡方分布(连续)
-
k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。
-
卡方分布是 β 分布的特例
13. t 分布(连续)
t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。
代码:https://github.com/graykode/distribution-is-all-you-need/
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后祝大家天天进步!!
上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。