- 博客(105)
- 收藏
- 关注
原创 2025——》Java程序中常见问题
摘要:本文系统梳理Java开发中的典型问题及解决方案,涵盖语法异常、并发问题、性能调优等维度。重点包括:1)使用Optional类防御空指针;2)并发场景采用线程安全集合与原子操作;3)内存泄漏排查与GC调优技巧;4)Java8+特性规范(Stream/Lambda合理使用);5)模块化系统的反射适配方案。建议结合静态分析工具与《Effective Java》实践清单,重点关注空指针、资源管理、线程安全三大核心领域,特别对Java9+项目需规范模块声明。通过系统化问题分类与工具链支持,可显著提升代码质量。
2025-07-17 14:13:13
909
原创 2025——》JDK的下载和安装
本文提供JDK(Java Development Kit)全平台下载安装指南,涵盖Windows、macOS和Linux系统。详细说明从Oracle官网下载LTS版本(如JDK21)的步骤,包括Windows的.exe安装、macOS的.dmg包以及Linux的.tar.gz压缩包或.deb/.rpm包。重点讲解环境变量配置方法(JAVA_HOME和Path设置),并给出验证安装成功的命令(java -version)和HelloWorld测试程序。针对常见问题如安装失败、环境变量错误等提供解决方案
2025-07-17 13:44:20
741
原创 2025——》常用的DOS命令
Windows系统常用DOS命令指南摘要:本文整理了Windows系统最实用的DOS命令,分为文件管理、网络诊断、系统维护三大类。文件管理包含dir/cd/copy/del等基础命令及xcopy/robocopy等高级工具;网络诊断涵盖ping/ipconfig/netstat等网络工具;系统维护包含chkdsk/sfc/scannow等修复命令。特别提示:1)危险命令如format需谨慎使用;2)部分命令需管理员权限;3)建议配合重定向/管道等技巧提升效率。掌握这些命令可显著提升系统管理效率
2025-07-17 13:33:55
663
原创 2025——》Java的核心机制介绍-跨平台原理
摘要:Java通过字节码和JVM实现跨平台能力。编译器将源代码转为平台无关的字节码,不同系统的JVM负责解释或编译执行。JVM封装底层操作,通过JNI调用本地API,确保统一行为。关键机制包括类加载、JIT优化及内存管理。虽然存在GUI差异和性能开销,但通过AOT编译、模块化等技术持续优化。Java广泛应用于企业、移动和物联网领域,GraalVM等新技术将进一步提升其跨平台优势。"一次编写,到处运行"的核心设计使Java保持跨平台首选地位。
2025-07-17 13:21:45
838
原创 2025——》Java的核心机制介绍-垃圾收集机制
摘要: Java垃圾收集(GC)是JVM自动管理堆内存的机制,通过可达性分析识别并回收不可达对象。JVM采用分代模型,将堆分为年轻代(复制算法)和老年代(标记-清除/整理算法),针对不同对象生命周期优化回收效率。主流GC算法包括复制、标记-清除和标记-整理,配合多种收集器(如Serial、Parallel、CMS、G1)适配吞吐量或低延迟场景。核心挑战在于减少STW(Stop-The-World)停顿,调优需权衡堆大小、分代比例及收集器选择。理解GC机制对JVM性能优化至关重要。
2025-07-17 13:16:30
600
原创 2025——》计算机语言的发展历史/Java语言的发展历史
计算机语言发展经历了从机器语言到现代高级语言的演进过程。1940年代二进制机器语言直接操控硬件但难以理解;1950年代汇编语言引入助记符;随后出现FORTRAN、COBOL等高级语言;1970年代结构化编程兴起(如C语言);1980年代面向对象编程成为主流(C++等);1990年代Java、Python等适应互联网需求;2000年后Go、Rust等新语言聚焦并发与安全。Java发展历程尤为典型:1991年始于Oak项目,1995年正式命名并推出"一次编写,到处运行"理念
2025-07-17 13:10:29
997
原创 2025——》from pandas import Series/如何使用pandas中的Series进行数据操作?
在 Python 中,from pandas import Series 是直接导入 pandas 库中 Series 类 的语句,用于创建一维带标签的数据结构。在 pandas 中,Series 是一维带标签的数组,可存储任意数据类型(整数、字符串、浮点数等)。通过以上方法,你可以灵活使用 pandas 的Series进行数据处理、分析和可视化。实际应用中,Series常作为DataFrame的列使用,建议结合DataFrame的操作一起学习。
2025-07-08 21:37:26
1083
原创 2025——》import pandas as pd/如何在Jupyter Notebook中显示pandas的图表?
在 Python 中,import pandas as pd 是导入 pandas 库的标准语句,用于数据分析和表格数据处理。在 Jupyter Notebook 中显示 pandas 的图表非常便捷,pandas 的DataFrame和Series对象内置了基于 Matplotlib 的绘图方法。
2025-07-08 21:09:26
1085
原创 2025——》import matplotlib.pyplot as plt/如何在Jupyter Notebook中使用Matplotlib库?
在 Jupyter Notebook 中使用 Matplotlib 库进行数据可视化非常便捷,import matplotlib.pyplot as plt 是 Python 中用于导入 Matplotlib 库的绘图模块 pyplot 并设置别名为 plt 的标准语句。Matplotlib 是一个强大的可视化库,广泛用于数据可视化、图表绘制和科学绘图。
2025-07-08 19:24:33
939
原创 2025——》import numpy as np/如何在Jupyter Notebook中导入NumPy库?
在 Python 中,import numpy as np 是导入 NumPy 库并为其指定别名 np 的常见语句。在 Jupyter Notebook 中导入 NumPy 库非常简单,只需在代码单元格中执行导入语句即可。
2025-07-08 19:16:31
906
原创 2025——》numpy中np.random.rand()的使用方法
在 NumPy 里,np.random.rand()函数能够创建指定维度的数组,并且数组里的元素是在 [0, 1) 这个半开区间内均匀分布的随机浮点数。
2025-07-08 19:08:16
613
原创 2025——》numpy中np.partition()的使用方法
在 NumPy 中,np.partition()是一个用于部分排序的函数,它可以高效地找到数组中第 k 小(或大)的元素,并将数组分为两部分:小于等于该元素的值和大于该元素的值。虽然结果数组不是完全排序的,但第 k 小的元素会被放置在正确的位置上。
2025-07-08 07:01:44
577
原创 2025——》C 语言的运算符和表达式
C 语言的运算符和表达式是构建程序逻辑的基础,它们支持从简单的算术运算到复杂的位操作和逻辑判断。合理运用运算符优先级和结合性,可以编写出简洁且表意明确的表达式。在复杂表达式中,建议使用括号明确运算顺序,提高代码可读性。
2025-07-06 18:58:29
781
原创 2025——》C语言输入和输出
掌握 C 语言的输入输出机制是开发实用程序的基础,合理使用不同的 I/O 函数可以高效处理各种数据格式和设备交互。在 C 语言中,输入输出(I/O)操作通过标准库函数实现,主要分为格式化 I/O、字符 I/O 和文件 I/O 三类。
2025-07-06 18:47:28
626
原创 2025——》C 语言中的数据类型有?如何使用?
掌握 C 语言的数据类型系统是编写高效、安全代码的基础。合理选择数据类型可以优化内存使用,并避免常见的编程错误。C 语言的数据类型系统是构建程序的基础,它定义了变量的存储方式、取值范围和可执行操作。
2025-07-06 18:42:05
652
原创 2025——》C程序的注释
在 C 语言中,注释是向代码添加说明或解释的重要方式,不会被编译器执行。合理使用注释可以提高代码可读性和可维护性。合理使用注释是专业程序员的基本素养,通过清晰、简洁的注释,可以显著提升代码的可维护性和团队协作效率。
2025-07-06 18:36:26
699
原创 2025——》C语言程序的编译及运行
C 语言作为编译型语言,其程序从源码到可执行文件需经过多个阶段。通过掌握上述编译流程和工具,开发者可以高效构建、调试和优化 C 语言项目,从简单的 Hello World 到复杂的操作系统内核均能应对自如。
2025-07-06 18:30:53
676
原创 2025——》如何搭建C语言开发环境?
搭建 C 语言开发环境需根据操作系统类型选择合适的工具链,可搭建高效的 C 语言开发环境,满足从入门学习到项目开发的需求。
2025-07-06 18:24:21
912
原创 2025——》C语言的应用
从操作系统内核到量子计算模拟,C 语言始终是构建数字世界的底层基石。其高效性、可移植性和对硬件的直接控制能力,使其在物联网、边缘计算、高性能计算等领域持续发光。正如 Linux 内核和 llama.cpp 项目所示,C 语言不仅是技术遗产,更是推动计算机技术进步的持续动力。开发者可根据项目需求,在追求性能的核心模块中选择 C 语言,同时结合现代工具(如 ggml 框架)和搭档语言(如 Python)提升整体开发效率。
2025-07-06 18:19:21
929
原创 2025——》C语言发展历史及特点
C 语言凭借其高效性、可移植性和对底层硬件的直接控制能力,在操作系统、嵌入式系统和高性能计算领域占据不可替代的地位。尽管面临现代编程语言的竞争,其标准化演进(如 C23)和工具链的完善(如 GCC 优化选项)仍使其保持活力。正如 Linux 内核和 Git 项目所示,C 语言不仅是技术遗产,更是推动计算机技术进步的持续动力。开发者可根据项目需求,在追求性能的核心模块中选择 C 语言,同时结合现代工具和搭档语言(如 Python)提升整体开发效率。
2025-07-06 18:15:12
491
原创 2025——》如何查看和管理系统中的DNS服务器地址?
要查看和管理系统中的 DNS 服务器地址,需根据操作系统(Windows、Linux、macOS)选择对应方法
2025-07-05 11:41:36
822
原创 2025——》VMware中Linux的网络配置
在 VMware 中配置 Linux 网络时,需根据具体需求选择桥接、NAT 或仅主机模式。可根据实际需求灵活配置 VMware 中 Linux 的网络连接。
2025-07-04 18:48:17
1008
原创 2025——》在 Linux 系统中如何解决硬件未经过上游测试的问题?
在 Linux 系统中遇到 “硬件未经过上游测试(Warning: Intel Processor – this hardware has not undergone upstream testing)” 这种提示,通常并不会对系统的基本使用产生实质性的影响。这只是提示该硬件没有在 Linux 社区或内核开发的上游环境中进行全面测试
2025-07-03 22:57:20
348
原创 2025——》 Pillow 库中getchannel()的使用方法
getchannel() 是提取图像特定通道的便捷方法,常用于图像处理、计算机视觉(如特征提取)和颜色分析。返回的通道可进一步处理或与其他通道组合。
2025-06-29 19:18:42
826
原创 2025——》Image.open( )的使用方法
Pillow 的 Image.open() 提供了简洁而强大的图像操作能力,适用于图像预处理、计算机视觉和图形应用开发。
2025-06-29 19:01:20
827
原创 2025——》plt.imread的使用方法
plt.imread() 是加载图像到 NumPy 数组的便捷工具,结合 plt.imshow() 可快速查看图像。图像数据本质上是多维数组,可直接用 NumPy 进行处理,适用于计算机视觉、图像处理等场景。
2025-06-29 18:40:16
896
原创 2025——》numpy中ndarray的聚合操作
NumPy 的聚合操作通过 axis 参数灵活处理多维数据,同时提供高效的计算性能。掌握这些函数是进行科学计算和数据分析的基础。
2025-06-29 17:15:49
543
原创 2025——》numpy中np.hstack与np.vstack的使用方法
在 NumPy 中,np.hstack 和 np.vstack 是用于水平和垂直堆叠数组的便捷函数。
2025-06-29 17:07:38
589
原创 2025——》np.concatenate和np.vstack有什么区别?
在 NumPy 中,np.concatenate 和 np.vstack 都用于连接数组,但它们在语法和功能上有核心区别
2025-06-29 17:02:27
356
原创 2025——》numpy中np.concatenate的使用方法
在 NumPy 中,np.concatenate() 用于沿指定轴连接多个数组。它是合并数据的核心函数,支持多维数组操作。
2025-06-29 17:00:14
775
原创 2025——》numpy中的切片操作方法
在 NumPy 中,切片(Slicing)是从数组中提取子数组的强大工具,相比 Python 原生列表的切片更灵活高效。
2025-06-29 16:54:14
683
原创 2025——》numpy中ndarray的基本操作
在 NumPy 中,ndarray(N-dimensional array)是核心数据结构,提供了高效的多维数组操作
2025-06-29 16:46:39
437
原创 2025——》numpy中n.std()的使用方法
在 NumPy 中,n.std() 用于计算数组的标准差。标准差是衡量数据分布离散程度的统计量
2025-06-29 16:39:38
719
原创 2025——》numpy中n.tolist()的使用方法
在 NumPy 里,n.tolist() 方法能够把 NumPy 数组转换为 Python 列表。
2025-06-29 16:26:44
443
原创 2025——》机器视觉OpenCV基础知识
OpenCV是一个开源的计算机视觉库,提供图像处理、视频分析等功能。核心模块包括图像输入输出、几何变换、色彩空间转换等基础操作,支持BGR/RGB/HSV等多种色彩模式。视频处理方面可实现实时读取、帧处理和保存。典型应用场景涵盖工业检测、安防监控、医学影像等领域。开发环境配置支持Python和C++,需注意中文路径处理和内存管理等常见问题。掌握基础后可进阶学习特征提取、目标检测等高级功能。
2025-06-22 17:18:06
1064
原创 2025——》机器视觉之opencv/图片和视频的加载和显示基本知识详解
本文介绍了OpenCV在图片和视频处理中的基本操作。主要内容包括:(1)图片的加载、显示、属性查看与保存方法;(2)视频文件的读取、播放、摄像头捕获和视频保存技术;(3)常见的色彩空间转换功能;(4)使用注意事项如路径处理、资源释放等。这些基础操作为后续学习OpenCV高级功能奠定了基础,包括图像处理算法和计算机视觉应用开发。
2025-06-22 17:10:16
795
原创 2025——》zbrush中快捷键的设定
ZBrush快捷键设置指南:1. 基础快捷键通过Preferences自定义,保存为.zkk文件;2. 推荐核心功能快捷键方案,包含雕刻/遮罩/细分/材质等操作;3. 高级技巧包括标记菜单、脚本绑定及第三方配置;4. 针对不同工作流提供优化建议;5. 常见问题解答及性能优化提示。合理设置快捷键可提升30%工作效率,建议根据个人习惯定制高频操作组合。
2025-06-20 16:59:40
1447
原创 2025——》zbrush中Z球的基本操作
在 ZBrush 中,**Z 球(ZSphere)** 是快速搭建 3D 模型结构的核心工具,通过简单的球体和线条组合,可高效创建角色、生物或机械的基础拓扑。
2025-06-20 16:54:53
647
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人