常见的卷积神经网络列举

经典的卷积神经网络(CNN)在深度学习发展史上具有重要地位,以下是一些里程碑式的模型及其核心贡献:


1. LeNet-5(1998)

  • 提出者:Yann LeCun
  • 特点
    • 首个成功应用于手写数字识别(MNIST)的CNN。
    • 结构:卷积层 + 池化层(当时用Subsampling) + 全连接层。
    • 使用Tanh激活函数,后续被ReLU取代。
  • 意义:奠定了CNN的基本结构。

2. AlexNet(2012)

  • 提出者:Alex Krizhevsky 等(Geoffrey Hinton团队)
  • 特点
    • 赢得ImageNet竞赛(ILSVRC 2012),top-5错误率大幅降低至15.3%。
    • 引入ReLU激活函数解决梯度消失。
    • 使用Dropout防止过拟合。
    • 首次采用GPU加速训练(双GPU并行)。
  • 意义:开启CNN在计算机视觉的黄金时代。

3. VGGNet(2014)

  • 提出者:牛津大学Visual Geometry Group
  • 特点
    • 核心思想:小卷积核(3×3)堆叠替代大卷积核,减少参数并增强非线性。
    • 常用版本:VGG-16 和 VGG-19(数字代表层数)。
    • 结构规整,易于迁移学习。
  • 意义:证明了深度的重要性,设计理念影响后续模型。

4. GoogLeNet(Inception v1, 2014)

  • 提出者:Google团队
  • 特点
    • 提出Inception模块:并行多尺度卷积(1×1、3×3、5×5)和池化,通过1×1卷积降维。
    • 引入辅助分类器缓解梯度消失。
    • 参数量仅为AlexNet的1/12,效率极高。
  • 后续改进:Inception v2/v3(BN、分解卷积)、v4(结合ResNet)。

5. ResNet(2015)

  • 提出者:何恺明等(Microsoft Research)
  • 特点
    • 残差连接(Residual Block):解决深层网络梯度消失问题,允许训练超过1000层的网络。
    • 赢得ILSVRC 2015,top-5错误率3.57%(超越人类水平)。
    • 变体:ResNeXt(分组卷积)、DenseNet(密集连接)。
  • 意义:成为现代CNN的基础结构。

6. 其他重要变体

  • MobileNet(2017):深度可分离卷积,轻量化设计。
  • EfficientNet(2019):复合缩放(深度/宽度/分辨率平衡)。
  • SENet(2017):通道注意力机制(Squeeze-and-Excitation模块)。

总结

模型核心贡献应用场景
LeNet-5首个CNN结构手写数字识别
AlexNetReLU/Dropout/GPU训练大规模图像分类
VGGNet小卷积核堆叠迁移学习基础
GoogLeNetInception多尺度模块高效计算
ResNet残差连接解决深度问题极深层网络设计

这些模型推动了CNN在图像分类、目标检测(如Faster R-CNN)、语义分割(如U-Net)等任务中的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值