<辗转相除法> 求最大公因数 C语言+超级奇妙配图讲解

本文介绍了如何利用辗转相除法(欧几里得算法)求解两个整数的最大公因数(GCD)。通过示例12和18,详细解释了算法的步骤:当b不等于0时,计算a对b的余数r,然后a取b的值,b取r的值,如此迭代直至b为0,最后的a即为最大公因数。提供的C语言代码展示了这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目概况:

输入两个数 a、b,求这两个数的最大公因数

解题思路:

如果b等于0的话,计算结束,a就是最大公因数

如果b不等于0,那么就去计算 a 对 b 的余数 r ,之后将 a 取 b 的值,b 取 r 的值,再回到第一步直到b为0为止。

以 a=12,b=18 为例

接下来求 a 对 b 的余数 r ;并且将 b 的值赋予a,r 的值赋予 b ;

 在重复上述过程,直到b的值是0

综合图解,是可以看出是有规律可循的,表格中的值每一个值是自右向左依次传递的 ,a的值是右边的b传递的,b的值又是其右边的r传递的 ,r的值是a与b相除取余得到的,所以叫辗转相除法

 代码演示:

int main(){
	int a,b;
	scanf("%d",&a);
	scanf("%d",&b);
	while(b!=0){
		int r=a%b;
		a=b;
		b=r;
	}
	printf("最大公因数是:%d",a);	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值