基于Matlab实现车牌识别

具体代码见https://github.com/asdf854/-.git

一、任务描述

选择的内容是车牌识别。完成了12项功能分别为导入图片、图像灰度化、边缘检测、腐蚀、闭运算、形态滤波处理、车牌定位、车牌提取、车牌裁剪、车牌识别、语音播报、退出功能。

二、设计思路

设计总体思路为车牌的二值化,提取车牌,对车牌进行水平和垂直扫描出车牌的每个字母,然后将字符模板与裁剪出的每个车牌字母进行模板匹配,最后得出识别结果。

三、功能模块

1 图形的GUI设计

1.1算法原理

GUI(Graphical User Interfaces)中文名称为图形用户界面,是一种面向对象的设计,实现用户与计算机的交互。GUI模块是MATLAB的重要组成部分,因为在GUI设计时,MATLAB提供各种控件,比如菜单、文本框、按钮等,并且可以直接修改控件的属性,极大地方便编程。

GUI界面为一个图形界面,图形内有各种控件,对这些控件的操作是通过句柄(handle)完成,每个控件都有一个句柄,并且是唯一的。通过句柄选中对象,然后修改该对象的属性,完成对控件的精确控制。GUI给出很多控件,如图7-1所示,常用的控件有按钮、单选按钮、复选按钮、坐标轴、静态文本等等,每个控件都可编写回调函数,可以选择触发回调函数的条件,比如单击鼠标、选择菜单等等。

考虑到要实现12个功能,就设计了大量的按钮和文本框和坐标区,对应的结果单独放在一个图片框中。

1.2验结果及对比分析

2 导入图片

2.1 算法原理

导入图片之前,应该要将文本框里面和坐标区里面的内容设置为空对象。使用set函数将其设置为[]。然后再使用uigetfile方法读取文件内容。将图片命名为file激活第一第二个坐标区,将原图显示在第一个和第二个坐标区。

2.2 算法设计

axes(handles.axes1); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes2); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes3); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes4); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes5); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes6); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes7); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes8); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes9); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes10); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes11); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes12); cla reset; box on; set(gca, 'XTickLabel', [], 'YTickLabel', []);

axes(handles.axes13); cla reset; box on; set(gca, 'XTickLabel
### 使用MATLAB实现蓝色车牌识别 #### 图像预处理 为了有效识别蓝色车牌,在图像预处理阶段,可以先转换颜色空间以便更好地分离背景和其他物体。通常会将RGB色彩模型转为HSV或YCbCr色彩模型来增强特定颜色的选择性[^1]。 ```matlab % 将输入图片从RGB转化为HSV颜色空间 img = imread('blue_license_plate.jpg'); hsv_img = rgb2hsv(img); ``` #### 车牌定位 针对蓝色车牌的颜色特性设定阈值范围,从而提取出可能属于车牌区域的部分。这一步可以通过二值化操作完成,即设置合理的Hue(色调),Saturation(饱和度), Value(亮度)区间筛选目标颜色[^3]。 ```matlab lower_blue = [0.5, 0.7, 0]; % 设定较低的蓝调界限 upper_blue = [0.7, 1, 1]; % 设定较高的蓝调界限 mask = (hsv_img(:,:,1)>lower_blue(1)) & ... (hsv_img(:,:,1)<upper_blue(1)) & ... (hsv_img(:,:,2)>lower_blue(2)) & ... (hsv_img(:,:,2)<upper_blue(2)) & ... (hsv_img(:,:,3)>lower_blue(3)) & ... (hsv_img(:,:,3)<upper_blue(3)); plate_region = img .* uint8(mask); % 应用掩码获取潜在车牌区 ``` #### 字符分割与识别 一旦锁定了疑似车牌的位置之后,下一步就是对其进行细化处理并准备送入OCR引擎做最终的文字解析工作。对于字符间的分隔线检测以及单个字符轮廓捕捉均能辅助提高整体精度[^2]。 ```matlab grayPlate = rgb2gray(plate_region); binaryPlate = imbinarize(grayPlate,'global'); % 全局自适应二值化 morphedPlate = bwmorph(binaryPlate,'thin',Inf); % 形态学细化 stats = regionprops(morphedPlate,'BoundingBox','Area'); chars = []; for i=1:length(stats) bb = stats(i).BoundingBox; area = stats(i).Area; if area > minCharSize && area < maxCharSize % 过滤掉不符合大小条件的对象 charImg = morphedPlate(round(bb(2)):round(bb(2)+bb(4)), round(bb(1)):round(bb(1)+bb(3))); chars = cat(3,chars,charImg); end end ``` 上述代码片段展示了如何利用MATLAB工具箱中的函数来进行基本的蓝色车牌识别任务。实际应用中还需要考虑更多细节调整参数以达到更好的性能表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值