C++编程-递归算法2

目录

先言

例题五:集合的划分

题目描述

算法分析

标准程序

例题六:数的计数

题目描述

方法一

概述

标准程序

方法二

概述

标准程序

方法三

概述

标准程序

方法四

概述

标准程序

方法五

概述

标准程序

小练习

题目描述

输入

输出

样例输入 复制

样例输出 复制


先言

开学了,讲文章的时间将大幅度减少,基本1~3天一篇

今天讲递归的剩下两个例题

例题五:集合的划分

题目描述

【题目描述】

设S是一个具有n个元素的集合,S={a1,a2,……,an},现将S划分成k个满足下列条件的子集合S1,S2,……,Sk ,且满足:

则称S1,S2,……,Sk是集合S的一个划分。它相当于把S集合中的n个元素a1 ,a2,……,an 放入k个(0<k≤n<30)无标号的盒子中,使得没有一个盒子为空。请你确定n个元素a1 ,a2 ,……,an 放入k个无标号盒子中去的划分数S(n,k)。

【输入样例】setsub.in

       23  7

【输出样例】setsub.out

       4382641999117305

算法分析

      先举个例子,设S={1,2,3,4},k=3,不难得出S有6种不同的划分方案,即划分数S(4,3)=6,具体方案为:

{1,2}∪{3}∪{4}  {1,3}∪{2}∪{4}    {1,4}∪{2}∪{3}

{2,3}∪{1}∪{4}  {2,4}∪{1}∪{3}    {3,4}∪{1}∪{2}

      考虑一般情况,对于任意的含有n个元素a1 ,a2,……,an的集合S,放入k个无标号的盒子中去,划分数为S(n,k),我们很难凭直觉和经验计算划分数和枚举划分的所有方案,必须归纳出问题的本质。其实对于任一个元素an,则必然出现以下两种情况:

     1. {an}是k个子集中的一个,于是我们只要把a1,a2 ,……,an-1 划分为k-1子集,便解决了本题,这种情况下的划分数共有S(n-1,k-1)个;

      2. {an}不是k个子集中的一个,则an必与其它的元素构成一个子集。则问题相当于先把a1,a2,……,an-1 划分成k个子集,这种情况下划分数共有S(n-1,k)个;然后再把元素an加入到k个子集中的任一个中去,共有k种加入方式,这样对于an的每一种加入方式,都可以使集合划分为k个子集,因此根据乘法原理,划分数共有k * S(n-1,k)个。

  1.       综合上述两种情况,应用加法原理,得出n个元素的集合{a1,a2,……,an}划分为k个子集的划分数为以下递归公式:S(n,k)=S(n-1,k-1) + k * S(n-1,k) (n>k,k>0)。
  2.      下面,我们来确定S(n,k)的边界条件,首先不能把n个元素不放进任何一个集合中去,即k=0时,S(n,k)=0;也不可能在不允许空盒的情况下把n个元素放进多于n的k个集合中去,即k>n时,S(n,k)=0;再者,把n个元素放进一个集合或把n个元素放进n个集合,方案数显然都是1,即k=1或k=n时,S(n,k)=1。
  3.     因此,我们可以得出划分数S(n,k)的递归关系式为:
  4.     S(n,k)=S(n-1,k-1) + k * S(n-1,k)     (n>k,k>0)
  5.     S(n,k)=0                         (n<k)或(k=0)
  6.     S(n,k)=1                         (k=1)或(k=n)

标准程序

  #include<iostream>
 using namespace std;
 
 int s(int n, int k)                  //数据还有可能越界,请用高精度计算
 {
     if ((n < k) || (k == 0)) return 0;        //满足边界条件,退出
     if ((k == 1) || (k == n)) return 1;
     return s(n-1,k-1) + k * s(n-1,k);      //调用下一层递归
 }
 
 int main()
 {
     int n,k;
     cin >> n >> k;
     cout << s(n,k);
     return 0;
 }

例题六:数的计数

题目描述

【问题描述】

我们要求找出具有下列性质数的个数(包括输入的自然数n)。先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理:

不作任何处理;

在它的左边加上一个自然数,但该自然数不能超过原数的一半;

加上数后,继续按此规则进行处理,直到不能再加自然数为止。

输入:自然数n(n≤1000)

输出:满足条件的数

【输入样例】

       6     满足条件的数为       6   (此部分不必输出)

                                    16

                                    26

                                     126

                                     36

                                     136

【输出样例】

       6

方法一

概述

用递归,f(n)=1+f(1)+f(2)+…+f(div/2),当n较大时会超时,时间应该为指数级。

标准程序

#include<iostream>
using namespace std;
int ans;
void dfs(int m)                           //统计m所扩展出的数据个数
{
    int i;
    ans++;                                   //每出现一个原数,累加器加1;
    for (i = 1; i <= m/2; i++)         //左边添加不超过原数一半的自然数,作为新原数
      dfs(i); 
}
int main()
{
    int n;
    cin >> n;
    dfs(n);
    cout << ans;
    return 0;
} 

方法二

概述

用记忆化搜索,实际上是对方法一的改进。设h[i]表示自然数i满足题意三个条件的数的个数。如果用递归求解,会重复来求一些子问题。例如在求h[4]时,需要再求h[1]和h[2]的值。现在我们用h数组记录在记忆求解过程中得出的所有子问题的解,当遇到重叠子问题时,直接使用前面记忆的结果。

标准程序

#include<iostream>
using namespace std;
int h[1001];
void dfs(int m)
{
    int i;
    if (h[m] != -1) return;        //说明前面已经求得h[m]的值,直接引用即可,不需要再递归
    h[m] = 1;                           //将h[m]置为1,表示m本身为一种情况
    for (i = 1; i <= m/2; i++)
    {
        dfs(i);
        h[m] += h[i];
    }   
}
int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
      h[i] = -1;                          //h数组初始化为-1
    dfs(n);                               //由顶到下记忆化递归求解
    cout << h[n];   
    return 0;
}

方法三

概述

用递推,用h(n)表示自然数n所能扩展的数据个数,则h(1)=1, h(2)=2, h(3)=2, h(4)=4, h(5)=4, h(6)=6, h(7)=6, h(8)=10, h(9)=10.分析以上数据,可得递推公式:h(i)=1+h(1)+h(2)+…+h(i/2)。此算法的时间度为O(n*n)。

设h[i]-i按照规则扩展出的自然数个数(1≤i≤n)。下表列出了h[i]值及其方案:

标准程序

#include<iostream>
using namespace std;
int h[10001];
int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)   //按照递增顺序计算扩展出的自然数的个数
    {
        h[i] = 1;                          //扩展出的自然数包括i本身
        for (int j = 1; j <= i/2; j++)         
                                 //i左边分别加上1…自然数 按规则扩展出的自然数
          h[i] += h[j]; 
    }
    cout << h[n];
    return 0;
}

方法四

概述

是对方法三的改进,我们定义数组s,s(x)=h(1)+h(2)+…+h(x),h(x)=s(x)-s(x-1),此算法的时间复杂度可降到O(n)。

标准程序

#include<iostream>
using namespace std;
int h[1001],s[1001];
int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        h[i] = 1 + s[i/2];
        s[i] = s[i-1] + h[i];                  //s是h的前缀累加和
    }
    cout << h[n];
    return 0;
}

方法五

概述

     还是用递推,只要作仔细分析,其实我们还可以得到以下的递推公式: (1)当i为奇数时,h(i)=h(i-1);

     (2)当i为偶数时,h(i)=h(i-1)+h(i/2).

标准程序

#include<iostream>
using namespace std;
int h[1001];
int main()
{
    int n;
    cin >> n;
    h[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        h[i] = h[i-1];
        if (i % 2 == 0) h[i] = h[i-1] + h[i/2];
    }
    cout << h[n];
    return 0;
}

小练习

点我提交

题目描述

上机练习6.3.6    用递归算法将一个十进制数X转换成任意进制数M(M<=16)。

输入

一行,整数X和M,X<=109,M<=16。

输出

十进制数X的M进制数。

样例输入 复制
11 2
样例输出 复制
1011
  • 15
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值