干货 | 学模电很头痛?那是因为你没吃透大神总结的这3点核心能力

模拟电路是电子工程师绕不开的一个坎,虽然现在很多模拟电路可以用集成电路实现。但是,从基础性的学习和能力的培养来看,还是应该对模拟电路有一个比较深入的了解。

某清华大学老师总结模拟电路应该具备的能力有:分析能力、设计能力、实践能力这三点。

这三种能力具体包含如下内容。

分析问题的能力

会看:读图,定性分析
会算:定量计算

设计能力

会选:电路形式、器件、参数

实践能力

会调:仪器选用、测试方法、故障诊断、EDA

分析能力

会看:电路的识别、定性分析。

1、会识别和判断电路

共射、共基、共集、共源、共漏、差分放大电路及哪种接法
• 引入了什么反馈
• 比例、加减、积分、微分……运算电路
• 低通、高通、带通、带阻有源滤波器
• 单限、滞回、窗口电压比较器
• 正弦波、矩形波、三角波、锯齿波发生电路
• OTL、 OCL、 BTL、变压器耦合乙类推挽功率放大电路
• 线性、开关型直流稳压电源......

2、会分析电路的性能

• 放大倍数的大小、输入电阻的高低、带负载能力的强弱、频带的宽窄
• 引入负反馈后电路是否稳定
• 输出功率的大小、效率的高低
• 滤波效果的好坏
• 稳压性能的好坏……

会算:电路的定量分析

1、电路的求解

• 电压放大倍数、输入电阻、输出电阻
• 截止频率、波特图
• 深度负反馈条件下的放大倍数
• 运算关系
• 电压传输特性
• 输出电压波形及其频率和幅值
• 输出功率及效率
• 输出电压的平均值、可调范围

设计能力

会选:根据需求选择电路及元器件

一、在已知需求情况下选择电路形式

例如:

1、是采用单管放大电路还是采用多级放大电路;是直接耦合、阻容耦合、变压器耦合还是光电耦合;是晶体管放大电路还是场效应管放大电路;是否用集成放大电路。

2、是采用电压串联负反馈电路、电压并联负反馈电路、电流串联负反馈电路还是采用电流并联负反馈电路。

3、是采用文氏桥振荡电路、 LC正弦波振荡电路还是采用石英晶体正弦波振荡电路。

4、是采用OTL、 OCL、 BTL电路还是变压器耦合乙类推挽电路

5、是采用电容滤波还是电感滤波

6、是采用稳压管稳压电路还是串联型稳压电路

二、在已知功能情况下选择元器件类型

例如:

1、是采用低频管还是高频管。
2、是采用通用型集成运放还是采用高精度型、高阻型、低功耗……集成运放。
3、采用哪种类型的电阻、电位器和电容

4、在什么平台进行选择,例如:唯样商城、ONEYAC...

三、在已知指标情况下选择元器件的参数

1、电路中所有电阻、电容、电感等的数值;半导体器件的参数,如稳压管的稳定电压和耗散功率,晶体管的极限参数等。

例如:实现下列电路

1、组成放大倍数大于104、输入电阻大于2MΩ、输出电阻小于100Ω、可以放大缓慢变化信号的放大电路找电子元器件上唯样商城

2、实现三路信号的加法运算

3、将直流信号转换成频率与之幅值成线性关系的矩形波信号

4、取掉信号中的直流成分

5、将正弦波变为方波

6、产生100kHz的正弦波

7、产生10MHz的正弦波

8、输出电压为10~20V负载电流为3A的直流稳压电源

9、……

实践能力

要知道哪些基本电路?

包括电路结构特征,性能特点,基本功能,适用场合。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
模电习的两个重 凡是电的,总是避不开模电。 上时老师教的知识,毕业时统统还给老师。毕业后又要从事产品设计,《模电》拿起又放下了 n 次,躲不开啊。毕业多年后,回头望,聊聊模电习,但愿对妹有帮助。 通观整本书,不外是,晶体管放大电路、场管放大电路、负反馈放大电路、集成运算放大器、波形及变换、功放电路、直流电源等。然而其中的重,应该是场管和运放。何也? 按理说,场管不是教材的重,但目前实际中应用最广,远远超过双极型晶体管(BJT)。场效应管,包括最常见的MOSFET,在电源、照明、开关、充电等等领域随处可见。 运放在今天的应用,也是如火如荼。比较器、ADC、DAC、电源、仪表、等等离不开运放。 1、场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有 N 沟道和 P 沟道两种器件。有结型场管和绝缘栅型场管 IGFET 之分。IGFET 又称金属-氧化物-半导体管 MOSFET。MOS 场效应管有增强型 EMOS 和耗尽型 DMOS 两大类,每一类有 N 沟道和 P 沟道两种导电类型。 习时,可将 MOSFET 和 BJT 比较,就很容易掌握,功率 MOSFET 是一种高输入阻抗、电压控制型器件,BJT 则是一种低阻抗、电流控制型器件。再比较二者的驱动电路,功率 MOSFET 的驱动电路相对简单。BJT 可能需要多达 20% 的额定集电极电流以保证饱和度,而 MOSFET 需要的驱动电流则小得多,而且通常可以直接由 CMOS 或者集电极开路 TTL 驱动电路驱动。其次,MOSFET 的开关速度比较迅速,MOSFET 是一种多数载流子器件,能够以较高的速度工作,因为有电荷存储效应。其三,MOSFET 有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低。它们还可以在较宽的温度范围内提供较好的性能。此外,MOSFET 具有并行工作能力,具有正的电阻温度系数。温度较高的器件往往把电流导向其它MOSFET,允许并行电路配置。而且,MOSFET 的漏极和源极之间形成的寄生二极管可以充当箝位二极管,在电感性负载开关中特别有用。 场管有两种工作模式,即开关模式或线性模式。所谓开关模式,就是器件充当一个简单的开关,在开与关两个状态之间切换。线性工作模式是指器件工作在某个特性曲线中的线性部分,但也未必如此。此处的“线性”是指 MOSFET 保持连续性的工作状态,此时漏电流是所施加在栅极和源极之间电压的函数。它的线性工作模式与开关工作模式之间的区别是,在开关电路中,MOSFET 的漏电流是由外部元件确定的,而在线性电路设计中却并非如此。 2、运放所传递和处理的信号,包括直流信号、交流信号,以及交、直流叠加在一起的合成信号。而且该信号是按“比例(有符号+或-,如:同相比例或反相比例)”进行的。不一定全是“放大”,某些场合也可能是衰减(如:比例系数或传递函数 K=Vo/Vi=-1/10)。 运放直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入失调电流温漂、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 个人认为,选择运放,可以只侧重考虑三个参数:输入偏置电流、供电电源和单位增益带宽。
<h3>回答1:</h3><br/>Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 <h3>回答2:</h3><br/>Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 <h3>回答3:</h3><br/>Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值