排序(2)之选择排序

目录

前言

选择排序

1.直接选择排序

1.1基本思想

​编辑

1.2 直接选择排序的特性

2.堆排序

3.测试


前言

继插入排序后,今天小编就给大家另一个模块,选择排序的学习,那么话不多说,我们直接进入正题。


选择排序

1.直接选择排序

1.1基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
这里我们以升序为例给大家看看其运作过程:

在实现直接插入排序过程中,我们需要使用到交换内容的函数

void swap(int* p, int* q)
{
	int temp = * p;
	* p = * q;
	* q = temp;
}

这里大家直接看代码:

void Selectsort(int* arr, int n)
{

	int left = 0;
	int right = n - 1;
	while (left < right)
	{
		int minxi = left;
		int maxxi = left;
		for (int i = left+1; i < right+1; i++)
		{
			if (arr[i] < arr[minxi])
			{
				minxi = i;
			}
			if (arr[i] > arr[maxxi])
			{
				maxxi = i;
			}
		}
		swap(&arr[left],&arr[minxi]);
		if (left == maxxi)
		{
			maxxi = minxi;
		}
		swap(&arr[right],&arr[maxxi]);
		left++;
		right--;
	}

}
这里我们是选出两个值,一个最小值,一个最大值,这里我们把最小值,放在序列前面,最大值放在序列后面,这里我给大家细细讲解一下:

 对于这个判断条件,是这里有一个特殊情况需要我们处理

这里我给大家举例说明: 

1.2 直接选择排序的特性

1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
说明:对于直接排序的时间复杂度,最坏的情况下和最后的情况的时间复杂度都是一致的都是O(N^2),由于直接选择排序我们无论在什么情况每次都是选择最大值,最小值,知道所有元素排序完毕,但是在这个过程中我们并不能判断它是否已经有序,所以该最好已经最坏情况下都是O(N^2)。
3. 空间复杂度:O(1)
4. 稳定性:不稳定

2.堆排序

2.1基本思想

堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是 通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

对于堆的介绍,以及下面小编要用到的向下调整思想,小编已经写了一篇文章有关于堆这个结构的完整介绍(堆介绍).

那么为什么我们排升序的时候要用大堆,降序用小堆呢?对于堆这个结构我们每次能得到的就是一个数组中的最大值,最小值,那么对于升序,我们就可以每次选出最大值,然后我们只需要让最大值和最后一个值进行内容交换,然后在下一次的过程中,我们就不让这个最大值参与堆的这个结构中,然后再选出来的值,就是我们的第二大值,重复操作后就能实现我们的需要的排序功能。

具体过程如下:

那么转换成代码如下:
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 选出左右孩子中大的那一个
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
//升序排序
void HeapSort(int* a, int n)
{
	//向下建堆
	for (int i = n / 2 - 1; i >= 0; i--)
	{
		AdjustDwon(a, n, i);
	}
	//堆排序
	for (int i = n-1; i>0;i-- )
	{
        swap(&a[0], &a[i]);
		AdjustDwon(a, i, 0);
	}
}

首先我们要先保证我们的数组成为一个堆的结构,那么我们就需要让其向下建堆(或者向上建堆,但是向下建堆的时间复杂度小于向上建堆的,所以我们这里使用更优的向下建堆,两者的区别我会在之后给大家详细介绍)。

这里向下建堆的过程是:

 对于向下建堆我们首先就是从下往上建堆,保证下面是堆的结构后,再不断地往上建堆,所以我们就要从最后一个孩子的父节点开始往上建堆(叶子节点已经符合了堆这个结构),所以我们起始值就是i=n/2-1.

对于堆排序,相信大家已经明白了一个大概,我们只需要控制我们选出来的最大值,不再次参与建堆这个过程即可。

3.测试

这里我们对我们排序功能进行测试:

堆排序:

int main()
{
	int arr[10] = { 1,23,44,55,67,56,87,76,88,98 };
	int len = sizeof(arr) / sizeof(int);
	for (int i = 0; i < len; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

 直接选择排序:

int main()
{
	int arr[10] = { 1,23,44,55,67,56,87,76,88,98 };
	int len = sizeof(arr) / sizeof(int);
	Selectsort(arr, len);
	for (int i = 0; i < len; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半只牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值