前记
最近在完善公司的监控系统, 发现在项目运行时经常会出现一些运行时的问题, 这些问题往往不是一个子服务引发的问题, 而可能是某个环节出现了问题, 这时候就需要引入APM系统。在收集APM数据时发现在Python
生态中针对web框架都有完善的APM中间件用于接口统计与监控, 但是第三方调用库相关的APM实现都比较少(几乎没有), 同时这些库大多数也都没提供一些钩子实现。这就需要自己去封装一些库, 为这些库实现一套调用过程的数据提供逻辑。
本文是以Python
的aiomysql
库为例,阐述如何基于Python
的探针完成调用库的调用过程统计与监控的封装。
注: 监控的形式的agent有很多种,如
Prometheus
,Zabbix
,Graphite
和Opentracing
他们的数据源有很大的不同,但是他们都是基于元数据封装成自己的源数据,然后发送到对应的服务,所以本文只介绍如何提取元数据,剩下的如何发送需要自己按照特定的监控系统去实现。 注:这里以aiomysql库来做示例,提取数据的方法应该用统一的dbapi2, 本文只阐述如何简单的实现。
1.简单粗暴的方法–对mysql库进行封装
要统计一个执行过程, 就需要知道这个执行过程的开始位置和结束位置, 所以最简单粗暴的方法就是基于要调用的方法进行封装,在框架调用MySQL
库和MySQL
库中间实现一个中间层, 在中间层完成耗时统计,如:
# 伪代码
def my_execute(conn, sql, param):
# 针对MySql库的统计封装组件
with MyTracer(conn, sql, param):
# 以下为正常使用MySql库的代码
with conn.cursor as cursor:
cursor.execute(sql, param)
...
看样子实现起来非常不错, 而且更改非常方便, 但由于是在最顶层的API上进行修改, 其实是非常不灵活的, 同时在cursor.execute
里会进行一些预操作, 如把sql和param进行拼接, 调用nextset
清除当前游标的数据等等。 我们最后拿到的数据如时间耗时也是不准确的, 同时也没办法得到一些详细的元数据, 如错误码等等.
如果要拿到最直接有用的数据,就只能去改源代码, 然后再调用源代码了, 但是如果每个库都需要改源代码才能统计, 那也太麻烦了, 好在Python
也提供了一些类似探针的接口, 可以通过探针把库的源码进行替换完成我们的代码.
2.Python的探针
在Python
中可以通过sys.meta_path
来实现import hook
的功能, 当执行 import 相关操作时, 会根据sys.meta_path
定义的对象对import相关库进行更改. sys.meta_path
中的对象需要实现一个find_module
方法, 这个find_module
方法返回None
或一个实现了load_module
方法的对象, 我们可以通过这个对象, 针对一些库在import时, 把相关的方法进行替换, 简单用法如下,通过hooktime.sleep
让他在sleep的时候能打印消耗的时间. github源码存储
import importlib
import sys
from functools import wraps
def func_wrapper(func):
"""这里通过一个装饰器来达到狸猫换太子和获取数据的效果"""
@wraps(func)
def wrapper(*args, **kwargs):
# 记录开始时间
start = time.time()
result = func(*args, **kwargs)
# 统计消耗时间
end = time.time()
print(f"speed time:{end - start}")
return result
return wrapper
class MetaPathFinder:
def find_module(self, fullname, path=None):
# 执行时可以看出来在import哪些模块
print(f'find module:{path}:{fullname}')
return MetaPathLoader()
class MetaPathLoader:
def load_module(self, fullname):
# import的模块都会存放在sys.modules里面, 通过判断可以减少重复import
if fullname i