求解某个点关于一条直线的垂足和对称点是几何运算中经常遇到的问题。
本篇介绍如何用 Python
的 Sympy
库来轻松的找到垂足和对称点,不需要进行任何代数公式的推导。
1. 垂足问题
垂足是指从一点向直线作垂线,垂线与直线的交点即为垂足。
所以,知道任意点的坐标P0(x0,y0)P_0 (x_0, y_0)P0(x0,y0)和直线的方程y=kx+by = kx+by=kx+b,就能算出垂足的坐标。
比如,已知三个点的坐标:P0(x0,y0),P1(x1,y1),P2(x2,y2)P_0(x_0, y_0), P_1(x_1, y_1), P_2(x_2, y_2)P0(x0,y0),P1(x1,y1),P2(x2,y2),其中P1P_1P1和P2P_2P2确定一条直线,
求点P0P_0P0在直线上的垂足。
解决的思路:
- 根据P1(x1,y1),P2(x2,y2)P_1(x_1, y_1), P_2(x_2, y_2)P1(x1,y1),P2(x2,y2)算出直线的方程 y=kx+by = kx+by=kx+b
- 假设垂足坐标 P(x,y)P(x, y)P(x,y)
- 垂足在直线上,代入坐标可得 kx+b−y=0kx+b-y = 0kx+b−y=0
- 互相垂直的两个向量PP0PP_0PP0和 P1P2P_1P_2P1P2内积为 000,
即(x−x0)×(x1−x2)+(y−y0)×(y1−y2)=0(x - x_0) \times (x_1 - x_2) + (y - y_0) \times (y_1 - y_2)=0(x−x0)×(x1−x2)+(y−y0)×(y1−y2)=0
根据上面步骤3
或4
中的两个方程,就能算出垂足的坐标。
当然,借助Sympy
库,我们不用自己去推导计算过程,只要列出解决的思路即可。
# 根据两点求直线的斜率和截距
def get_line(p1, p2):
k = Symbol("k")
b = Symbol("b")
expr1 = p1[0] * k + b - p1[1]
expr2 = p2[0] * k + b - p2[1]
ret = solve((expr1, expr2), dict=True)
return {"k": ret[0][k], "b": ret[0][b]}
# 已知三个点
def get_foot_from_points(p1, p2, p0):
# 垂足的坐标
x = Symbol("x")
y = Symbol("y")
l = get_line(p1, p2)
# 垂足P位于直线上
expr1 = x * l["k"] + l["b"] - y
# 向量 PP0 和 P1P2 的内积为0
expr2 = (x - p0[0]) * (p1[0] - p2[0]) + (y - p0[1]) * (p1[1] - p2[1])
ret = solve((expr1, expr2), dict=True)
return np.array([float(ret[0][x]), float(ret[0][y]), 0])
2. 对称点问题
对称点则是指某一点相对于直线对称的点。
对称点PPP的计算思路和计算垂足类似,其实某个点P0P_0P0与它对称点PPP的中点就是垂足。
所以,已知三个点的坐标:P0(x0,y0),P1(x1,y1),P2(x2,y2)P_0(x_0, y_0), P_1(x_1, y_1), P_2(x_2, y_2)P0(x0,y0),P1(x1,y1),P2(x2,y2),其中P1P_1P1和P2P_2P2确定一条直线lll,
则点P0P_0P0对于直线lll的对称点PPP的计算思路:
- 根据P1(x1,y1),P2(x2,y2)P_1(x_1, y_1), P_2(x_2, y_2)P1(x1,y1),P2(x2,y2)算出直线的方程 y=kx+by = kx+by=kx+b
- 假设对称点坐标 P(x,y)P(x, y)P(x,y)
- P0P_0P0和对称点PPP的中点在直线上,代入坐标可得 k×(x+x0)/2+b−(y+y0)/2=0k\times(x+x_0)/2+b-(y+y_0)/2 = 0k×(x+x0)/2+b−(y+y0)/2=0
- 互相垂直的两个向量PP0PP_0PP0和 P1P2P_1P_2P1P2内积为 000,
即(x−x0)×(x1−x2)+(y−y0)×(y1−y2)=0(x - x_0) \times (x_1 - x_2) + (y - y_0) \times (y_1 - y_2)=0(x−x0)×(x1−x2)+(y−y0)×(y1−y2)=0
根据上面步骤3
或4
中的两个方程,就能算出对称点的坐标。
# 关于直线的对称点
# p1和p2在直线l上,计算p0关于l的对称点
def symmetry_point(p1, p2, p0):
# 对称点坐标
x = Symbol("x")
y = Symbol("y")
l = get_line(p1, p2)
# (x, y) 和 p 的中点在直线上
expr1 = l["k"] * (x + p0[0]) / 2 + l["b"] - (y + p0[1]) / 2
# 内积为0
expr2 = (x - p0[0]) * (p1[0] - p2[0]) + (y - p0[1]) * (p1[1] - p2[1])
ret = solve((expr1, expr2), dict=True)
return np.array((float(ret[0][x]), float(ret[0][y]), 0))
3. 总结
再一次看到Sympy
的符号化计算的强大之处,它节约了我们在求解问题时计算和推导的时间,
而这部分恰恰是耗时最多的部分。
活用Sympy
库,极大的降低了用程序来解决代数和几何问题的门槛。
题外话
感谢你能看到最后,给大家准备了一些福利!
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python兼职渠道推荐*
学的同时助你创收,每天花1-2小时兼职,轻松稿定生活费.
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)
若有侵权,请联系删除