【牛客挑战赛63】圣遗物

 根据题意可知概率

P= \frac{2^{n-1}}{n!}

这里需要用快速幂求 2^{n-1},然后因为在求值的过程中取模,所以不能直接相除,根据提示,需要求b的逆元(费马小定理)。所以答案是 a\times b^{p-2} % p

代码如下:

#include <bits/stdc++.h>
using namespace std;
 
 
#define MOD 998244353
#define power 998244351
int n;
 
long long jie[3000];
 
long long fastpow(long long a,long long b,long long p){
 long long ans = 1;
 while(b){
  if(b&1){
   ans = ans * a % p;
  }
  a = a*a%p;
  b >>= 1;
 }
 return ans%p;
}
 
int main(){
    scanf("%d",&n);
    long long x,y;
    x=fastpow(2,n-1,MOD);
    jie[1]=1;
    for(int i=2;i<=n+5;i++){
        jie[i]=(jie[i-1]%MOD)*(i%MOD)%MOD;
    }
    y=fastpow(jie[n], power, MOD);
    cout<<(x*y)%MOD;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值