一、云检测和移除
1.云检测意义
云会掩盖底层地面特征,阻碍遥感分析的准确性和有效性。
2.经典算法
使用基于阈值的技术和手工制作的特征来识别云像素。【对图像外观和云结构的变化很敏感】
3.深度学习方法
利用卷积神经网络 (CNN) 的强大功能来准确检测遥感图像中的云。这些模型在大型遥感图像数据集上进行训练,使它们能够学习和概括云的独特特征和模式。生成的云掩码可用于识别云像素并将其从进一步分析中消除。
二、变化检测
第三张图显示了第一张图转变到第二张图改变的部分。
变化检测是遥感分析的重要组成部分,能够监测景观随时间的变化。【土地利用变化、城市发展、海岸侵蚀和森林砍伐】
作用对象:不同时间拍摄的一对图像/一段时间内收集的多个图像。
注意:必须考虑云和阴影对变化检测分析的影响,并采用适当的方法来减轻它们的影响。
三、时间序列
遥感数据中的时间序列观测值分析具有许多应用,包括提高分类模型的准确性以及预测未来模式和事件。提高分类模型的准确性的原因为:
- 时间序列数据可以捕捉到地物随季节变化的动态特征。
- 单一时刻的遥感数据可能受到云层、雾气、阳光强度等短期环境因素的影响,而时间序列数据可以通过多个时段的数据综合来消除这些干扰,获得更加稳定的特征表现。