Pytorch学习--卷积层(代码包括 Dataset 、DataLoader、nn.Module、nn.Conv2d、Tensorboard的使用)

一、用法

常用的为前五个参数

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数动图演示
参数讲解参考

二、参数 in_channels 和 out_channels 的含义

如果in_channels=1,out_channels=2该怎么办呢?
此时会生成两个卷积核(数值不同),则会生成对应的2个tensor矩阵。
如果in_channels=2,out_channels=1该怎么办呢?
此时,有两种解决方式:输出线性组合 或者 舍弃部分信息并最大限度地保留特征信息。

三、代码实现

该代码包括 Dataset 、DataLoader、nn.Module、nn.Conv2d、Tensorboard的使用,如果有代码看不懂的小伙伴可以先看一下同专栏的其他博客哦,博客都很短,很方便看~

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.conv1 = Conv2d(3,6,3,stride=1,padding=1)
    def forward(self,x):
        x = self.conv1(x)
        return x

Yorelee = Mary()

writer = SummaryWriter("logs")

step = 0
for data in dataloader:
    img,targets = data
    writer.add_images("input",img,step)
    output = Yorelee(img)
    output = torch.reshape(output,(-1,3,32,32))
    writer.add_images("output", output, step)
    #print(output.shape)
    step += 1
writer.close()

在这里插入图片描述
在这里插入图片描述
参考视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值