一、用法
常用的为前五个参数
classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
二、参数 in_channels 和 out_channels 的含义
如果in_channels=1,out_channels=2该怎么办呢?
此时会生成两个卷积核(数值不同),则会生成对应的2个tensor矩阵。
如果in_channels=2,out_channels=1该怎么办呢?
此时,有两种解决方式:输出线性组合 或者 舍弃部分信息并最大限度地保留特征信息。
三、代码实现
该代码包括 Dataset 、DataLoader、nn.Module、nn.Conv2d、Tensorboard的使用,如果有代码看不懂的小伙伴可以先看一下同专栏的其他博客哦,博客都很短,很方便看~
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)
class Mary(nn.Module):
def __init__(self):
super(Mary,self).__init__()
self.conv1 = Conv2d(3,6,3,stride=1,padding=1)
def forward(self,x):
x = self.conv1(x)
return x
Yorelee = Mary()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
img,targets = data
writer.add_images("input",img,step)
output = Yorelee(img)
output = torch.reshape(output,(-1,3,32,32))
writer.add_images("output", output, step)
#print(output.shape)
step += 1
writer.close()