目录
一、过期数据
过期数据:过期数据指设置了有效性的数据到达了过期时间的数据,可以通过TTL指令获取其状态。
- XX :具有时效性的数据
- -1 :永久有效的数据
- -2 :已经过期的数据或被删除的数据或未定义的数据
二、Redis的数据删除策略
过期数据是怎么存储的呢?redis的内存空间在存储key,不仅仅是存储了key对应的value,还有value对应的地址;而在redis会开辟一片内存空间,hash的存储结构,filed就是失效数据的内存地址,value就是失效的时间,有了这个我们就知道那些数据需要删除。而我们的删除策略就紧密和这么一块内存的数据相关。
数据删除策略的目标:在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或内存泄露
2.1定时删除
- 解释:创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务去执行对key的删除操作;删除key的数据同时,删除expire内区保存的地址信息;
- 优点:节约内存,到时就删除,快速释放不必要的内存占用
- 缺点:抢占CPU,当CPU负载很高的时候,会影响redis指令的响应时间和指令吞吐量
2.2惰性删除
- 解释:数据达到过期时间,不做处理,直到下次访问到这个数据时才去删除;也就是你的每一次的get操作都会和expireIfNeeded()相绑定,数据不到期就返回数据,到期就删除数据返回Nil
- 优点:节约CPU性能
- 缺点:大量失效数据积压之后,内存占用大,存储空间压力大
2.3 定期删除
上面两种方案都是相对比较极端的方案,那么定期删除就是一个比较折中的方案。
- 解释:周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
- 优点1:CPU性能占用设置有峰值,检测频度可自定义设置
- 优点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
- 总结:周期性抽查存储空间 (随机抽查,重点抽查)
2.4对比
类型 | 说明 |
定时删除 | 节约内存;不分时段占用CPU资源,频度高 |
惰性删除 | 内存占用严重;延迟执行,CPU利用率高 |
定期删除 | 内存定期随机清理;每秒花费固定的CPU去维护内存;随机抽查,重点抽查 |
一般来说,是惰性删除和定期删除结合使用。
三、逐出算法
上面我们说的删除策略操作的都是expire,都是有时效性的数据,失效了但是还在内存,要是所有数据都没过期,甚至都是永久有效的,内存不够了,这个添加数据会怎么样?
- Redis使用内存存储数据时,在执行每一个命令之前,会调用freeMemoryIfNeeded()检查内存是否充足,如果不满足当前添加数据的要求,redis会临时清理一些数据作为新指令需要的存储空间。这种清理数据的算法成为逐出算法。
- 注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕后,如果不能达到内存清理的要求,将出现错误信息。
(error) OOM command not allowed when used memory >'maxmemory'
影响逐出的几个相关配置:
- 最大可以使用的内存 maxmemory:指占用物理内存的比例,默认0,表示不限制;一般设定50%以上。
- 每次待选取删除的个数 maxmemory-samples :选取数据时并不会全库扫描,导致严重的性能消耗,降低读写性能。采用随机获取数据的方式作为待检测删除数据;
- 删除策略 maxmemory-policy:达到最大内存后,对被挑选出来的数据进行删除的策略
逐出策略有哪几种呢?
检测易失数据:
- volatile-lru:挑选最近最少使用的数据进行淘汰
- volatile-lfu:挑选最近使用次数最少的数据进行淘汰
- volatile-ttl:挑选将要过期的数据淘汰
- volatile-random:任意选择数据淘汰
检测全库数据:
- allkeys-lru:挑选最近使用的数据进行淘汰
- allkeys-lfu:挑选最近使用次数最少的数据进行淘汰
- volatile-random:任意选择数据淘汰
放弃驱逐策略:
- no-enviction:禁止驱逐数据,但是可能引发OOM
数据逐出策略配置的依据:
- 使用info指令输出监控信息,查看缓存hit和miss的次数,根据业务需求调优
不管使用哪一种,都会消耗CPU,还是要结合场景来选择,没有绝对好的策略。