选择排序
每一趟排序选择后面n-i+1个待排序记录中最小的一个,作为第i个记录。
直接选择排序 select sort
1)在n个记录R[i]~R[n]中,选择最小关键字的记录;
2)若它不是这组记录中第一个记录R[i],就将它跟R[i]对换;
3)在剩余记录中重复一二两步。
int Selectminkey(Sqlist &L,int i){
key=L.r[i].key
for(int n=i+1;n<=L.length;++n)
if(L.r[n].key<key){
key=L.r[n].key;
i=n;
}
return i;
}
void selectsort(Sqlist &L){
int i,j;
for(i=1;i<L.length;++i){
j=Selectminkey(L,i);
if(j!=i){
int temp=L.r[i].key;
L.r[i].key=L.r[j].key;
L.r[j].key=temp;}
}
}
堆排序
本质上是选择排序的一种,是数组满足以下性质:ai<a2i且<a2i+1;此为小堆顶,否则为大堆顶。
可以将堆排序看成是一个完全二叉树,并且每个根节点一定是小于(大于)它的左右结点。获取小堆顶的堆排序,输出堆顶元素后,用最后一个元素替代,再进行排序,得到一个新的堆。
以构建小堆顶代码为例:
void Minheadadjust(int *a,int k,int len)
{
a[0]=a[k];
for(int n=2*k;n<=len;n*=2)
{
if(n<=len && a[n]>a[n+1]) //如果左孩子大于右孩子,就让n+1,保存较小孩子的值
n++;
if(a[0]<=a[n]) //当原始根节点<=较小子节点的值,说明堆已满足小顶堆的性质,退出循环。
break;
else
{
a[k]=a[n];
k=n;
}
}
a[k]=a[0];
}
void buildminhead(int *a,int len)
{
for(int i=len/2;i>0;--i)
Minheadadjust(a,i,len);
}
void heapsort(int *a,int len)
{
buildminhead(a,len);
for(int i=len;i>0;--i)
{
swap(a[i],a[0]);
Minheadadjust(a,1,i-1);
}
}
如果要建立大顶堆,只需要改变两个地方的符号即可:
void Maxheadadjust(int *a,int k,int len)
{
a[0]=a[k];
for(int n=2*k;n<=len;n*=2)
{
if(n<=len && a[n]<a[n+1])
n++;
if(a[0]>=a[n])
break;
......