选择排序与堆排序

选择排序
每一趟排序选择后面n-i+1个待排序记录中最小的一个,作为第i个记录。
直接选择排序 select sort
1)在n个记录R[i]~R[n]中,选择最小关键字的记录;
2)若它不是这组记录中第一个记录R[i],就将它跟R[i]对换;
3)在剩余记录中重复一二两步。

int Selectminkey(Sqlist &L,int i){
    key=L.r[i].key
    for(int n=i+1;n<=L.length;++n)
        if(L.r[n].key<key){
        key=L.r[n].key;
        i=n;
        }
    return i;
}
void selectsort(Sqlist &L){
    int i,j;
    for(i=1;i<L.length;++i){
        j=Selectminkey(L,i);
        if(j!=i){
        int temp=L.r[i].key;
        L.r[i].key=L.r[j].key;
        L.r[j].key=temp;}
    }
}

堆排序
本质上是选择排序的一种,是数组满足以下性质:ai<a2i且<a2i+1;此为小堆顶,否则为大堆顶。
可以将堆排序看成是一个完全二叉树,并且每个根节点一定是小于(大于)它的左右结点。获取小堆顶的堆排序,输出堆顶元素后,用最后一个元素替代,再进行排序,得到一个新的堆。

以构建小堆顶代码为例:

void Minheadadjust(int *a,int k,int len)
{
    a[0]=a[k];
    for(int n=2*k;n<=len;n*=2)
    {
        if(n<=len && a[n]>a[n+1])    //如果左孩子大于右孩子,就让n+1,保存较小孩子的值
            n++;
        if(a[0]<=a[n])  //当原始根节点<=较小子节点的值,说明堆已满足小顶堆的性质,退出循环。
            break;
        else
        {
            a[k]=a[n];
            k=n;
        }
    }
    a[k]=a[0];
}
void buildminhead(int *a,int len)
{
    for(int i=len/2;i>0;--i)
        Minheadadjust(a,i,len);
}
void heapsort(int *a,int len)
{
    buildminhead(a,len);
    for(int i=len;i>0;--i)
    {
        swap(a[i],a[0]);
        Minheadadjust(a,1,i-1);
    }
}
        


如果要建立大顶堆,只需要改变两个地方的符号即可:

void Maxheadadjust(int *a,int k,int len)
{
    a[0]=a[k];
    for(int n=2*k;n<=len;n*=2)
    {
        if(n<=len && a[n]<a[n+1])    
            n++;
        if(a[0]>=a[n])       
            break;
......

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值