理解二进制拆位

E. Expected Power
在这里伤感一下思路都对了但是拆位拆错了的这一题,在看到这道题的第一眼,好原,但是又不怎么原。突然,我就想到了这一道题,同样是所有数两两异或的平方和,H. xor,但是这题是需要将所有子序列进行异或,求所有异或平方的和的期望,我当时就想到了直接将期望乘在每一个数字上,选择这位就乘 p p p,否则就乘 1 − p 1-p 1p。但是因为拆位没拆明白,导致最终还是没有做出来。

题意

题意就是给你 n n n个数,你有 p p p的概率选,求所有选出的数的异或平方和。

思路

像这种求异或的问题,我们可以将其转化为每一位进行求值,因为异或具有不进位的特点,所以每一位都可以独立,那么我们就可以把每个数字拆成 a i = ∑ x = 0 10 2 x b i , x a_i =\sum\limits_{x=0}^{10}2^xb_{i, x} ai=x=0102xbi,x,其中 b i , x b_{i, x} bi,x a i a_i ai的第 x x x位的数值(专业名词为二进制拆位)。那么两个数的异或平方和就可以写成 a i = ∑ x = 0 10 2 x a i , x , a j = ∑ y = 0 10 2 y a j , y a_i =\sum\limits_{x=0}^{1 0}2^xa_{i, x},a_j=\sum\limits_{y=0}^{10}2^ya_{j, y} ai=x=0102xai,xaj=y=0102yaj,y

a i ⊕ a j = ∑ k = 0 10 2 k [ a i , k ≠ a j , k ] a_i ⊕ a_j=\sum\limits_{k=0}^{10} 2^k[a_{i, k} \not=a_{j, k}] aiaj=k=0102k[ai,k=aj,k]
( a i ⊕ a j ) 2 (a_i ⊕a_j)^2 (aiaj)2
= ( ∑ x = 0 10 2 x [ a i , x ≠ a j , x ] ) ( ∑ y = 0 10 2 y [ a i , y ≠ a j , y ] ) =(\sum\limits_{x=0}^{10} 2^x[a_{i, x}\not=a_{j, x}])(\sum\limits_{y=0}^{10} 2^y[a_{i, y}\not=a_{j, y}]) =(x=0102x[ai,x=aj,x])(y=0102y[ai,y=aj,y])
那么对于多个数都可以进行如此操作,那么就变成求所有选出位数都是 1 1 1的期望数值是多少,我们定义一个 d p k , i , j , x , y dp_{k,i,j,x,y} dpk,i,j,x,y表示前面 k k k个数选择第 i i i位数值为 x x x,且第 j j j位数值为 y y y的期望为多少。
d p k , i , j , x , y = d p k − 1 , i , j , x , y ∗ ( 1 − p k ) + d p k − 1 , i , j , x ⨁ b i , k , y ⨁ b j , k ∗ p k dp_{k,i,j,x,y} = dp_{k - 1, i, j, x, y} * (1 - p_k) + dp_{k - 1, i, j, x \bigoplus b_{i,k}, y \bigoplus b_{j,k}} * p_k dpk,i,j,x,y=dpk1,i,j,x,y(1pk)+dpk1,i,j,xbi,k,ybj,kpk,前面为不选的期望,后面为选的期望。
最后答案为 ∑ i = 0 10 ∑ j = 0 10 d p n , i , j , 1 , 1 ∗ 2 i + j \sum\limits_{i=0}^{10} \sum\limits_{j=0}^{10} dp_{n,i,j,1,1} * 2^{i+j} i=010j=010dpn,i,j,1,12i+j
肯能有人会问这样为什么就可以求出所有数的二进制值,因为我们选出来的数字的平方可以化成 ( ∑ x = 0 10 2 x [ x 位为 1 ] ) ( ∑ y = 0 10 2 y [ y 位为 1 ] ) (\sum\limits_{x=0}^{10} 2^x[x位为1])(\sum\limits_{y=0}^{10} 2^y[y位为1]) (x=0102x[x位为1])(y=0102y[y位为1]),所以会是答案肯定每一位有 1 1 1的位置互相相乘,所以可以推出,而期望是独立的只对选和不选会有影响,不选就继承,否则就异或上第 k k k个数相应位置上的数位值即可。
代码

#include <bits/stdc++.h>

#define x first
#define y second
#define min(a, b) ((a) < (b)?(a):(b))
#define max(a, b) ((a) > (b)?(a):(b))

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL, LL> PLL; 
using PIII = pair<int, PII>;

const int N = 1010000, M = 510, MOD = 1e9 + 7;
const int inf = 2e9, xf3 = 0x3f3f3f3f;
const LL INF = 4e18, XF3 = 0x3f3f3f3f3f3f3f3f;

struct Node{
	int l, r;
};

int n, m, k, a[N], s[N], b[N];
int e[N], ne[N], h[N], idx, w[N];

void add(int a, int b, int c){
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

LL f[20][20][2][2], fl[N], fr[N], p[N];
int L[N], R[N];

int gcd(int a, int b){
	return b ? gcd(b, a % b) : a;
}

LL qmi(LL a, LL b, LL p){
    LL res = 1;
    while(b){
        if(b & 1) res = res * a % p;
        b >>= 1;
        a = a * a % p;
    }
    return res;
}

LL inv(LL x){
    return qmi(x, MOD - 2, MOD);
}

LL inv2[N], invp[N];

void solve(){

    cin >> n;

    for(int i = 1; i <= n; i ++) cin >> a[i];

    for(int i = 0; i < 15; i ++){
        for(int j = 0; j < 15; j ++){
            for(int aa = 0; aa < 2; aa ++){
                for(int bb = 0; bb < 2; bb ++){
                    f[i][j][aa][bb] = 0; 
                }
            }
            f[i][j][0][0] = 1;
        }
    }

    for(int i = 1; i <= n; i ++){
        cin >> p[i];
        p[i] = p[i] * inv(10000) % MOD;
        invp[i] = (1 - p[i] + MOD) % MOD;
    }
    /*
    (a ^ b) * (a ^ b) = a的所有位数有的数与b的所有位数异或不为0的数的乘积
    */
    
    for(int i = 1; i <= n; i ++){
        for(int j = 0; j < 15; j ++){
            for(int k = 0; k < 15; k ++){
                int u1 = a[i] >> j & 1, u2 = a[i] >> k & 1;
                int tmp[2][2] = {0};
                for(int aa = 0; aa < 2; aa ++){
                    for(int bb = 0; bb < 2; bb ++){
                        tmp[aa][bb] = (f[j][k][aa][bb] * invp[i] % MOD + f[j][k][aa ^ u1][bb ^ u2] * p[i] % MOD) % MOD;
                    }
                }
                
                for(int aa = 0; aa < 2; aa ++){
                    for(int bb = 0; bb < 2; bb ++){
                        f[j][k][aa][bb] = tmp[aa][bb];
                    }
                }
            }
        }
    }
    LL res = 0;
    for(int i = 0; i < 15; i ++){
        for(int j = 0; j < 15; j ++){
            LL P2 = (1LL << i + j) % MOD;
            res = (res + f[i][j][1][1] * P2 % MOD) % MOD;
        }
    }

    cout << res << "\n";
	return;
}

int main(){
	
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0); 
	
	//cout<<fixed<<setprecision(0)<<"\n";
	
	int _ = 1;
	cin>>_;
	
	while(_ --){
		solve();
	} 
	
	return 0;
}

/*



*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值