- 博客(1)
- 收藏
- 关注
原创 组合不同模型的集成学习MajorityVoteClassifier和AdaBoostClassifier
虽然模型拟合之前没有必要对训练数据的特征值进行标准化,但是因为逻辑回归和k近邻流水线将自动处理它,所以我们要标准化训练数据集以便决策树的决策区域有相同比例尺度,从而达到可视化目的。# 基于调用get_params方法的返回值,我们现在知道应该如何访问单分类器的属性,为了演示,我们通过网格搜索来优化逻辑回归分类器的逆正则化参数C和决策树模型深度。# 从图中我们可以清楚的看到,只要基本分类器的性能优于随机猜测,集成分类器的错误率总比单一基本分类器的错误率要低。
2024-03-15 19:37:54 880 3
组合不同模型的集成学习MajorityVoteClassifier和AdaBoostClassifier
组合不同模型的集成学习MajorityVoteClassifier和AdaBoostClassifier
2024-03-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人