
计算机视觉
文章平均质量分 97
计算机视觉
逆境清醒
奶奶级的姐,年龄50+。退休人员。纵然明日离世,不妨碍今日浇花!高科技发展远超普通认知,如你突遇无法理解的事情发生,别害怕,我们一起努力撑下去!
展开
-
【五一创作】使用Resnet残差网络对图像进行分类(猫十二分类,模型定义、训练、保存、预测)(一)
对十二种猫进行分类,属于CV方向经典的图像分类任务。图像分类任务作为其他图像任务的基石,可以更快上手计算机视觉,锻炼深度学习基本能力。猫十二分类项目针对猫脸识别12种猫分类数据集,对猫猫所属分类进行预测,最终将结果输出到CSV文件中。项目亮点在于使用ResNet50残差网络,使用残差网络对猫猫进行分类,并载入相应的预训练模型即可快速上手体验完成训练任务。使用飞桨框架,基于特定赛题下的数据完成。数据集包含12种类的猫的图片。整个数据分为训练集与测试集。原创 2023-04-30 20:38:56 · 6355 阅读 · 1 评论 -
【五一创作】使用Resnet残差网络对图像进行分类(猫十二分类,模型定义、训练、保存、预测)(二)
图像分类顾名思义就是一个模式分类问题,它的目标是将不同的图像,划分到不同的类别,实现最小的分类误差。图像分类是计算机视觉中最基础的任务,基本上深度学习模型的发展史就是图像分类任务提升的发展历史,不过图像分类并不是那么简单,也没有被完全解决。图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务。这里面还有很多需要继续学习的地方。训练模型时需要注意次数,100次训练得分0.9375,训练350次得分0.41667。原创 2023-04-30 20:39:48 · 2150 阅读 · 7 评论 -
给照片换底色(python+opencv)
生活中,我们有时需要更换照片的底色,例如证件照,有需要蓝底的,也有需要红底的。给照片换底色实现方法有很多,用phothshop、各种图片修改装饰软件都能够做到。那么在计算视觉角度看,实现给照片换底色的方法如何实现呢?🦄 三、修改图片颜色方法二(遍历图像,将像素值点替换修改为指定颜色)二、修改图片颜色方法一(遍历图像,将像素值点替换修改为指定颜色)# 图像高度 × 图像宽度 × 图像通道数。#图像数据类型:unit8,8位无符号整型。把图像修改成白底的图,更改背景:蓝色→白色。🦄 一、分析照片基本信息。原创 2023-04-23 20:57:46 · 5196 阅读 · 0 评论 -
直方图均衡化(调节图像亮度、对比度)
一、前言 二、直方图均衡化概念 三、直方图均衡化实例(1)、灰度图像的均衡处理实例①、卡通人物灰度图像均衡处理②、卡通猫头鹰灰度图像均衡处理③、弹琴猫灰度图像均衡处理(2)、彩色图像的均衡处理实例 四、总结原创 2023-04-18 19:24:48 · 17831 阅读 · 2 评论 -
直方图实例详解(颜色直方图、灰度直方图)
一、前言二、直方图的概念三、颜色直方图(1)、颜色直方图定义(2)、颜色直方图使用方法(3)、绘制颜色直方图①、绘制普通颜色直方图②、绘制灰度图像直方图③、绘制彩色图像直方图④、不同亮度图片直方图对比图⑤、彩色图像直方图(绘制在同一张图)四、灰度直方图(1)、灰度直方图定义(2)、灰度直方图函数(3)、灰度直方图实例①、绘制普通灰度直方图②、绘制多通道图像直方图五、使用掩模绘制直方图①、绘制方形掩模图像及直方图②、绘制圆形掩模图像及直方图六、总结原创 2023-04-16 06:57:26 · 24612 阅读 · 0 评论 -
计算机视觉__基本图像操作(显示、读取、保存)
图像显示、图像读取和图像保存是计算机视觉的基本操作,也是后续图像操作的基础。OpenCV是计算机视觉中经典的专用库,Matplotlib也是一种常用的图像处理库。OpenCV (Open Source Computer Vision Library),OpenCv 可以运行在多平台之上,轻量级而且高效,由一系列 C 函数和少量 C++类构成,提供了 Python、Ruby、MATLAB 等语言的接口。只有先获取图像之后,才能对图像进行操作处理,信息提取,结果输出,图像显示,图像保存。原创 2023-04-12 18:55:17 · 3881 阅读 · 0 评论 -
计算机视觉基础__图像特征
传统图像处理,需要找出图片中的关键特征,然后对这些特征进行识别,检测,处理,调整等。通过人工智能计算机视觉处理进行图像处理时,也同样需要先寻找出图像的特征。要正确通过计算机处理图片,我们就需要先了解图像的特征是什么。原创 2023-04-10 23:47:15 · 3783 阅读 · 0 评论 -
人工智能基础篇
一、人工智能、机器学习、深度学习的关系。(1)、关系图(2)、人工智能(3)、人类智能过程(4)、机器学习(5)、深度学习二、人工智能研究的领域。三、人工智能的应用场景(1)、计算机视觉(2)、语音技术(3)、自然语言处理(4)、决策系统(5)、大数据应用原创 2023-04-10 17:51:16 · 14393 阅读 · 1 评论