1 人工智能科普
1.1 什么是人工智能?
通过学习掌握了某种技能的机器,我们认为它具备了人工智能。
1.2 图灵测试
图灵测试是一种测试机器是否具有智能的方法,由英国计算机科学家艾伦.图灵提出。图灵测试的目的是评估机器能否以人类的水平进行自然语言交互,从而使人无法区分机器和人类的回答。若人类无法区分与之对话是人类还是机器,那么可以认为机器通过了图灵测试。
1.3 人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年):符号主义与逻辑推理
在这一时期,人工智能的研究集中在基于逻辑和规则的系统上,也就是所谓的符号主义。研究人员尝试通过编写明确的规则来模拟人类的思考过程。
第二次浪潮(20世纪80年代到 21 世纪初):连接主义与机器学习
随着计算能力的增长和个人电脑的普及,第二次AI浪潮开始转向神经网络和机器学习。这个阶段的特点是:
- 神经网络,模仿人脑结构的计算模型,特别是反向传播算法的应用。
第三次浪潮(2006年至今 ):基于互联网大数据的深度学习
特点:
- 深度学习:利用多层神经网络进行自动特征提取和模式识别,尤其是在图像识别、语音识别和自然语言处理等领域取得了显著成就。
- 大数据与云计算:互联网带来了海量的数据,而云计算提供了必要的计算基础设施。
2 智能金字塔
感知: 感知是人工智能最初的核心突破,赋予了机器“看”“听”“感受”的能力,让它们可以接收并理解外部信息。
认知: 如果说感知是让 AI“看见”与“听见”,那么认知则是赋予 AI“理解”与“推理”的能力。这一阶段的核心技术包括自然语言处理、知识图谱和强化学习。
问题 1:图像识别(yolo) 能够完成到那个层次?
回答:感知,仅仅只是能知道目标位置
问题 2:大模型能够完成到哪个层次?
回答:创造
3 AI 大模型发展历程
AI大模型发展历经三个阶段,分别是萌芽期、沉淀期和爆发期。
- 萌芽期(1950-2005): 以传统神经网络模型(如CNN)为代表,从基于专家知识到机器学习的发展,奠定了深度学习基础,为后续大模型研究开创了先河。
- 沉淀期(2006-2019): 以Transformer为代表的新型神经网络架构出现,推动了自然语言处理(如Word2Vec、GPT、BERT)和生成模型(如GAN)的发展,为大模型预训练和算法架构打下基础。
- 爆发期(2020-至今): 以GPT为代表的预训练大模型迅速发展,成为人工智能领域的主流,性能得到显著提升。
4 Scaling Law
在人工智能,尤其是深度学习领域,Scaling Law 基本上可以描述为:当模型的规模(参数数量、数据量、计算量)增加时,模型的性能会提升。
Scaling Law 通常用幂律(Power Law)来描述,具体的数学形式为: 𝑃 ∝ Size𝛼
其中:
- P 是模型的性能,通常可以用测试集上的精度、损失值等来度量;
- Size 是模型的规模(如参数数量、训练数据量、计算量等);
- α 是一个常数,表示性能提升的速率。当不受其他两个因素的制约时,模型性能与每个单独的因素都有幂律关系。
通常都会表现为随着规模的增长,性能会持续提升。
决定模型规模的因素:
- 参数量(模型复杂度)决定了模型的拟合能力,通常参数越多,模型能够表达的能力越强。
- 计算量(FLOPs)是衡量模型执行所需计算资源的标准。随着模型参数的增加,计算量也会线性增加。
- 数据量(训练数据)是模型学习的基础,更多的数据通常可以让模型学到更丰富的模式,从而提高其泛化能力。
模型性能受三个因素共同影响,其中计算量对性能的提升最为显著,其次是模型参数,而数据集大小的影响相对较小。在资源不受限制的情况下,性能提升最为显著。
5 大模型的涌现能力
涌现能力是指在大模型中,当模型的规模(包括计算量、模型参数或数据集大小)达到一定程度时,某些能力会“突然”出现拐点,性能肉眼可见地骤然提升。这种能力的提升并不是简单的线性增长,而是质的飞跃。
例如,大模型可能突然具备了多步算术、词义消歧、逻辑推导、概念组合、上下文理解等能力,这些都是传统小模型所难以实现的。
6 思维转变
将 “AI 是工具” 的思维转变为“AI 是员工或团队”
如果将大语言模型当成工具来使用,基本上就发挥不出来它的效能! 应该将大语言模型当作一个员工、甚至是一个团队来使用。
那么当成工具来使用和当成员工来使用的区别是什么?
- 当成工具来使用,谁掌握主动权? 自己,必须要去了解这个工具怎么去使用,才能够用好这个工具。
- 当成员工来使用,又是什么样子? 你需不需要去掌握一门技术? 不需要。当员工使用就很简单,就是给他一个需求,告诉它我要干什么事情,只要这个员工能力够,他就能够帮你干了。这就是当成员工和工具使用的区别。
7 人类与 AI 协同的方式
分为三大类: Enbedding模式、Copilot模式、Agents模式
- Enbedding模式:以人类为主,AI为辅助。这也是现在大多数的模式
- Copilot模式:领航模式。这种模式就是人类和AI协作工作模式
- Agents模式:人类还是主导,提出需求,AI去完成。Agent代理、智能体