JAVA学习-练习试用Java实现“一个简单的文本摘要系统 :基于关键词提取或句子摘要”

问题:

       java语言编辑,实现一个简单的文本摘要系统 :基于关键词提取或句子摘要。

解答思路:

       实现一个简单的文本摘要系统,我们可以采用基于关键词提取的方法。以下是一个简单的Java实现,使用TF-IDF(词频-逆文档频率)来提取关键词,然后基于关键词来生成摘要。

import java.util.*;


public class TextSummary {

    private static final int TOP_KEYWORDS = 5; // 选择前5个关键词


    public static void main(String[] args) {

        String text = "Natural language processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.";

        String summary = generateSummary(text);

        System.out.println("Summary: " + summary);

    }


    public static String generateSummary(String text) {

        // 将文本分割成单词

        String[] words = text.split("\\s+");


        // 计算TF-IDF值

        Map<String, Double> tfIdfScores = new HashMap<>();

        for (String word : words) {

            tfIdfScores.put(word, calculateTfIdf(word, words));

        }


        // 对单词按TF-IDF值排序

        List<Map.Entry<String, Double>> sortedEntries = new ArrayList<>(tfIdfScores.entrySet());

        sortedEntries.sort(Map.Entry.<String, Double>comparingByValue().reversed());


        // 提取关键词

        List<String> keywords = sortedEntries.stream()

                .limit(TOP_KEYWORDS)

                .map(Map.Entry::getKey)

                .collect(Collectors.toList());


        // 构建摘要

        StringBuilder summary = new StringBuilder();

        for (String keyword : keywords) {

            summary.append(keyword).append(" ");

        }

        return summary.toString().trim();

    }


    private static double calculateTfIdf(String word, String[] words) {

        int tf = countOccurrences(word, words);

        double idf = calculateIdf(word, words);

        return tf * idf;

    }


    private static int countOccurrences(String word, String[] words) {

        int count = 0;

        for (String w : words) {

            if (w.equalsIgnoreCase(word)) {

                count++;

            }

        }

        return count;

    }


    private static double calculateIdf(String word, String[] words) {

        int docCount = 0;

        for (String w : words) {

            if (w.equalsIgnoreCase(word)) {

                docCount++;

            }

        }

        return Math.log((double) words.length / (docCount + 1));

    }

}

       这个简单的文本摘要系统包括以下步骤:

       1. 将文本分割成单词。

       2. 计算每个单词的TF-IDF值,TF-IDF是词频(TF)和逆文档频率(IDF)的乘积。

       3. 根据TF-IDF值对单词进行排序。

       4. 选择TF-IDF值最高的前N个单词作为关键词。

       5. 使用这些关键词构建摘要。

       需要注意,这个实现非常简单,没有考虑停用词、词性标注或其他复杂的文本处理技术。在实际应用中,可能需要使用更高级的自然语言处理库(如Apache OpenNLP或Stanford NLP)来处理文本,并使用更复杂的算法来生成摘要。

(文章为作者在学习java过程中的一些个人体会总结和借鉴,如有不当、错误的地方,请各位大佬批评指正,定当努力改正,如有侵权请联系作者删帖。)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值