自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 MMdetection使用记录

python tools/analysis_tools/analyze_logs.py plot_curve D:\experiment\detection\detection_frameworks\mmdetection\work_dirs\deformable-detr_r50_16xb2-50e_coco\新建文件夹\20241219_005746\vis_data\20241219_005746.json --keys loss --out results.png --legend loss。

2024-12-29 08:34:45 1022

原创 MMDetection:Open MMLab Detection Toolbox and Benchmark

在目标检测中,批量大小通常远小于分类,典型的解决方案是使用预训练的主干网络的统计数据,并且在训练期间不更新它们,表示为FrozenBN。其他设置和模型架构保持不变。同时还有Bounded IoU Loss、IoU Loss、GIoU Loss、Balanced L1 Loss以及L1 Loss,这些损失通常在不同的方法和设置中实现,,论文中在相同的环境中评估了所有损失,发现性能随着分配给回归损失的不同损失权重而变化,因此,可以执行粗略的网格搜索来找到每种损失的最佳损失权重,通过调整损失权重可以提高性能。

2024-12-13 22:28:58 807

原创 深度学习框架PyTorch笔记(3)

相反,不当的初始化可能导致模型训练失败。使用autograd能够实现深度学习模型但是其抽象程度太低,代码量十分大,神经网络工具箱nn模块是构建与autograd之上的神经网络模块,它是专门为深度学习设计的模块,核心是Module,可以表示一个层,也可以表示一个网络,在使用nn时通常采用继承nn.Module,撰写自己的网络的方式。在实例中,输入张量形状是2×4,意味着有两个样本,每个样本有四个特征,全连接层的输入是4,输出为3,这就意味着输入的单个样本的四个特征会被映射成三个特征,因此最后的输出为2×3。

2024-11-24 07:11:54 606

原创 深度学习框架PyTorch笔记(2)

这个方法不会改变原始张量的数据,而是返回一个新的张量,这个新张量与原始张量共享相同的数据内存。scatter是gather的逆操作。从接口角度,对tensor的操作可以分为torch.function和tensor.function两类,一般对tensor的大部分操作同时支持这两类接口,比如torch.sum(a,b)等价于a.sum(b)从存储角度,tensor操作可以分为不会修改自身的数据和会修改自身的数据两类,a.add(b)的结果会返回一个新的tensor,a.add_(b)的结果仍存储在a中。

2024-11-22 10:00:00 1597

原创 深度学习框架PyTorch笔记(1)

如果你有一个张量输出,你需要对这个张量执行一个操作,使其结果为一个标量,然后才能调用backward函数。本问题使用了交叉熵损失函数,该损失函数通常用于多分类问题,创建一个随机梯度下降(SGD)优化器来更新模型的参数,获取模型net的所有参数,将学习率设置为0.01,在这个基础上还可以设置动量momentum,有助于加速SGD在相关方向上的收敛同时减少震荡。t.max(outputs.data,1)会返回两个值,一个是最大值,一个是最大值的索引(即预测的类别),需要用_,predicted来接收这两个值。

2024-11-19 09:33:06 1003

原创 吴恩达讲CNN 学习笔记(4)

人脸识别以及神经风格转换

2024-11-09 10:51:06 609

原创 吴恩达讲CNN 学习笔记(3)

对象检测是指利用图像处理与模式识别等领域的理论和方法,检测出图像中存在的目标对象,确定这些目标对象的语义类别,并标定出目标对象在图像中的位置。对象检测是计算机视觉中一个极速发展的领域。

2024-11-02 18:27:23 475

原创 吴恩达讲CNN学习笔记(2)

一些经典神经网络架构

2024-10-26 18:06:52 500 1

原创 吴恩达讲CNN 学习笔记(1)

从上图我们发现,6×6×3的图像和3×3×3的过滤器卷积后得到的是4×4×1的图像,在进行运算时我们可以将过滤器看作一个立方体,将其卡入输入图像的左上角,过滤器中的27个元素与图像中对应的元素相乘在求和后得到输出图像的第一个元素,之后类比二维卷积将过滤器按照步长滑动。前面我们大多考虑的是灰度图像,即n×n×1的图像,但是一个彩色图像通常有RGB三个通道,即n×n×3的图像,在对这种图像进行卷积处理时,过滤器应为f×f×3的矩阵,注意输入图像的通道和过滤器的通道个数必须相同。如下图所示的卷积步幅即为2。

2024-10-22 00:18:21 943 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除