自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(240)
  • 收藏
  • 关注

原创 SpringBoot+Vue校园跑腿系统实战

通过访谈32所高校的487名学生(覆盖985/211/普通本科),我们发现需求产生的深层动因:时空错位模型:示例:马斯洛需求层次映射:基于3个月的实际订单数据(样本量2,317单)的可视化呈现:(数据解读:晚18:00-19:00时段订单量占全日37%,主要动线为宿舍→食堂→快递点)使用K-means算法对用户行为聚类(scikit-learn实现):1.2 传统解决方案的深度技术批判1.2.1 微信群管理的系统脆弱性分析消息丢失率实验:模拟200人微信群在高峰时段(12:00-13:00)的

2025-02-12 04:03:56 1816

原创 MCP的传输协议:基于JSON-RPC 2.0的安全高效数据交互(八)

JSON-RPC 2.0是一种轻量级的远程过程调用(RPC)协议,它使用JSON(JavaScript Object Notation)作为数据格式来进行通信。JSON-RPC 2.0的设计目标是简单、易用,并且可以跨语言实现。MCP(Model Context Protocol,模型上下文协议)是一种开放协议,它标准化了应用程序如何向大型语言模型提供上下文。Anthropic将其比作AI应用程序的USB-C接口,提供了一种将AI模型连接到不同数据源和工具的标准化方法[18。

2025-04-17 02:57:24 1076

原创 MCP的采样机制:原理、流程与复杂代理行为实现(七)

MCP采样机制提供了一种标准化的方式,使服务器能够通过客户端请求语言模型(LLM)的采样(“生成"或"补全”)。这一流程允许客户端控制模型访问、选择和权限,同时使服务保持安全和高效。采样是MCP的一个强大功能,它允许MCP服务器通过客户端请求LLM的生成结果,从而实现复杂的智能行为,同时保持安全性和隐私性。

2025-04-17 02:41:14 1084

原创 深入解析MCP的提示词模板:结构、使用方法与实践(六)

接受动态参数包含来自资源的上下文链接多个交互引导特定工作流作为UI元素呈现(如斜杠命令)提示词被设计为用户可控的,这意味着它们从服务器暴露给客户端时,目的是让用户能够明确地选择使用它们。"description": "总结给定的文本","text": {"description": "需要总结的文本",},"text": "这是一段需要总结的文本。它包含一些信息,需要被提炼出来。

2025-04-17 02:34:05 1284

原创 MCP的资源管理:为LLMs提供上下文信息的机制研究(五)

MCP(Model Context Protocol,模型上下文协议)是由Anthropic在2024年底推出的一种开放协议。它通过提供标准化的接口,实现了AI模型与不同数据源和工具之间的无缝交互。MCP可以被看作是AI应用程序的"万能接口",就像USB接口一样,使AI模型能够与各种数据源和工具进行交互。MCP的主要目的是解决当前AI模型因数据孤岛限制而无法充分发挥潜力的问题。通过MCP,AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口。

2025-04-17 02:08:50 709

原创 深入解析MCP:大型语言模型的工具使用指南(四)

Model Context Protocol(MCP)是一个标准化协议,允许AI应用程序(包括程序化代理如PydanticAI、编码代理如Cursor等)安全地访问和操作本地及远程数据。它提供了一种通用、开放的标准,用于连接AI系统与数据源,取代了碎片化的集成方式,实现了单一协议的统一管理。MCP的主要目的是解决当前AI模型因数据孤岛限制而无法充分发挥潜力的难题,使AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口。

2025-04-17 01:58:57 872

原创 MCP的核心概念:扩展大型语言模型的能力(三)

通过提供统一的接口,MCP使LLMs能够安全地访问本地和远程资源、工具和预定义的提示词模板,从而显著扩展了它们的能力范围。MCP的推出被认为是AI领域的重要里程碑,它类似于为AI应用提供了一个"USB-C接口",使不同设备能够通过相同的接口连接各种外设和配件。另一个示例是文件系统MCP服务器,当Claude模型决定需要访问文件系统时,内置的MCP客户端会被激活,负责与文件系统MCP服务器建立连接。MCP服务器的实现通常涉及封装对资源、工具和提示词的访问,使其可以通过统一的接口被客户端获取或调用。

2025-04-17 01:52:43 723

原创 Model Context Protocol (MCP) 的架构设计详解(二)

MCP 是一种协议,它为 AI 模型和外部数据源之间提供了统一的接口标准。它允许 AI 模型在生成响应时访问外部数据,从而产生更相关、更准确的输出。MCP 的目标是帮助前沿模型产生更好、更有针对性的响应。通过使用 MCP,AI 模型可以像使用本地数据一样使用远程数据,这极大地扩展了 AI 的能力,使其能够处理更复杂、更实际的问题。

2025-04-17 01:46:01 661

原创 模型上下文协议(MCP)概述:AI与外部世界的桥梁(一)

模型上下文协议(MCP)是一种开放协议,用于标准化应用程序向大型语言模型提供上下文的方式。正如USB-C接口为设备连接各种外设和配件提供了标准化方式一样,MCP为AI模型连接不同的数据源和工具提供了标准化方式。MCP由Anthropic公司于2024年推出,旨在解决当前AI模型因数据孤岛限制而无法充分发挥潜力的难题。通过MCP,AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口。

2025-04-17 01:21:08 576

原创 SciPy工程实践与性能优化策略:数值计算中的误差传播、算法选择与并行加速(十五)

SciPy是一个功能强大的Python库,专为数学、科学和工程计算而设计。它建立在NumPy库之上,提供了更高级的功能,包括数值积分、最优化、统计和一些专用函数。SciPy是Python科学计算生态系统中的核心库之一,它通过为用户提供用于操作和可视化数据的高级命令和类,显著增强了Python的功能。SciPy库的发音为"Sigh Pie",它是一个开源软件,用于数学、科学和工程领域。SciPy通过为用户提供用于操作和可视化数据的高级命令和类,显著增强了Python的功能。

2025-04-12 10:34:04 1027

原创 物理常数体系与scipy.constants应用:国际单位制常数库的结构设计与实践(十四)

SciPy是一个用于科学计算的Python库,提供了各种数值算法和函数。其中的scipy.constants模块是物理计算中访问基本物理常数和执行单位换算的宝贵资源。该模块提供了大量物理常数和数学常数,以方便科学研究和工程计算。秒:基于铯-133原子的跃迁频率米:基于光在真空中的速度千克:根据基本的量子物理常量普朗克常数安培:基于基本电荷开尔文:基于玻尔兹曼常数摩尔:基于阿伏伽德罗常数坎德拉:基于发光强度,基于特定波长的辐射。

2025-04-12 10:22:16 580

原创 科学数据IO与scipy.io模块全解析:深入实现多种格式的读写操作(十三)

scipy.io是SciPy库中的一个核心模块,专门用于处理各种科学数据格式的输入和输出操作。它提供了一系列函数,使得Python程序能够方便地与不同来源和格式的数据进行交互。

2025-04-12 10:10:47 922

原创 特殊函数库与scipy.special模块详解:贝塞尔函数、伽马函数等的数学定义与应用(十二)

贝塞尔函数(Bessel functions),全称为伯努利-贝塞尔函数,是一类在数学中广泛使用的特殊函数,特别是在物理、工程和计算领域。它们起源于18世纪,由瑞士数学家丹尼尔·伯努利首次研究[5贝塞尔函数是贝塞尔微分方程的解。其中,ν是一个常数,称为函数的阶数。这个方程在柱坐标系下解决波动方程和热传导方程时自然出现,特别是在具有圆柱对称性的问题中。第一类贝塞尔函数,记作J_ν(x)第二类贝塞尔函数,记作Y_ν(x),也称为诺伊曼函数或补贝塞尔函数。

2025-04-12 02:54:33 728

原创 聚类分析与scipy.cluster模块实践:层次聚类与K-means算法(十一)

在向量量化中,码本是一组表示向量空间中不同区域的向量。每个数据点被分配到码本中最近的码字,这可以用于数据压缩或聚类。

2025-04-12 02:48:11 793

原创 稀疏矩阵计算与scipy.sparse模块解析(十)

稀疏矩阵是指矩阵中非零元素的数量远小于零元素数量的矩阵,通过只存储非零元素及其位置,可以大幅减少内存占用并提高计算效率。,该模块实现了多种稀疏矩阵存储格式,并提供了丰富的接口用于稀疏矩阵的创建、操作和线性代数计算。本篇文章将系统阐释COO、CSR、CSC等存储格式的优劣对比,解析稀疏矩阵的创建、运算与存储优化策略,演示线性代数运算的稀疏实现方法,帮助读者构建高效的大规模数据计算解决方案。模块实现了多种稀疏矩阵存储格式,每种格式都有其特定的优缺点,适用于不同的应用场景。本节将详细介绍稀疏矩阵的优化策略。

2025-04-12 02:30:22 591

原创 傅里叶变换原理与scipy.fft模块应用(九)

SciPy提供了scipy.fft模块用于执行傅里叶变换。需要注意的是,模块已经deprecated,官方推荐使用scipy.fft模块。

2025-04-12 02:24:45 945

原创 数字信号处理与scipy.signal模块详解:滤波器设计、卷积运算、谱分析及应用(七)

scipy.signal模块是SciPy库中用于信号处理的重要模块。它提供了许多用于数字信号处理、滤波、频谱分析、傅里叶变换、卷积等操作的函数。该模块主要用于处理和分析信号,提供了大量的函数和方法,用于滤波、卷积、傅里叶变换、噪声生成、周期检测、谱分析等信号处理任务。yn∑k−∞∞xk⋅hn−kynk−∞∑∞​xk⋅hn−k翻转:让两个信号列反过来平移:将其中一个信号相对于另一个信号平移相乘求和:对应元素相乘并求和。

2025-04-12 02:14:37 650

原创 图像处理算法与scipy.ndimage模块精讲:从空间滤波到医学影像处理(八)

除了内置的标准滤波器外,scipy.ndimage还提供了函数,允许用户自定义滤波操作。这为实现特定的图像处理算法提供了灵活性。函数接受一个可调用对象(实现滤波操作)作为参数。输入和输出数组的迭代由这些通用函数处理,边界条件的实现等细节也由这些函数处理。用户只需提供实现回调操作的函数。# 计算标准差在上述代码中,我们定义了一个名为的函数,该函数计算输入像素邻域内的标准差。然后,我们使用函数将这个自定义滤波器应用到图像上,邻域大小为3x3。需要注意的是,对于性能敏感的应用,可以使用scipy提供的。

2025-04-12 02:08:59 917

原创 统计建模与scipy.stats模块全解析:从概率分布到假设检验(六)

统计建模的第一步是明确问题和收集数据。某种药物对某种疾病的治疗效果是否显著?某种教学方法是否比传统方法更有效?某个地区的年降雨量是否遵循某种分布模式?根据研究问题,我们需要收集相应的数据。例如,对于药物疗效问题,我们可能需要收集两组患者的数据:一组接受药物治疗,一组接受安慰剂治疗。

2025-04-12 01:55:08 858

原创 科学计算线性代数与scipy.linalg模块精解:矩阵分解、方程求解与稀疏矩阵处理(五)

scipy.linalg模块是SciPy库中用于线性代数计算的核心模块。它不仅包含了NumPy线性代数函数的所有功能,还提供了更多高级功能,如LU分解、Cholesky分解、QR分解等矩阵分解方法,以及专门用于求解线性方程组、特征值问题和奇异值分解的函数。使用scipy.linalg而非numpy.linalg的一个主要优势是,它始终使用BLAS/LAPACK支持进行编译,而NumPy的这些功能是可选的。因此,SciPy版本通常会更快,具体取决于NumPy的安装方式。

2025-04-12 01:46:34 629

原创 数据插值技术精讲与scipy.interpolate应用(四)

在科学计算和数据分析领域,插值技术是一种重要的数据处理方法,它允许我们根据已知的数据点估计函数在未知点的值。Python的SciPy库提供了丰富的插值工具,从简单的一维插值到复杂的多维插值,涵盖了多种插值方法。通过插值,我们可以获得更平滑的数据曲线,填补数据中的空缺点,或者将数据转换到不同的采样率上。模块提供了多种插值功能,本教程将详细介绍这些功能的使用方法、参数配置以及实际应用场景,帮助读者掌握数据插值技术的核心要义。模块提供的一个函数,它可以创建一个插值函数,这个函数可以用新的。

2025-04-12 01:37:33 812

原创 优化算法原理与scipy.optimize实战指南:从基础到高级(三)

type:约束类型,可取'eq'(等式约束)或'ineq'(不等式约束)fun:约束函数,形式为fun(x),对于不等式约束,要求fun(x) ≥ 0满足约束。

2025-04-12 01:31:52 999

原创 数值积分方法与scipy.integrate模块解析:原理、实现与物理建模应用(二)

梯形积分:通过将被积函数近似为一系列梯形来计算积分,适用于光滑函数。辛普森积分:使用二次多项式近似被积函数,精度高于梯形积分。自适应积分:根据被积函数的变化率自动调整积分步长,重点细化函数变化剧烈的区域。龙贝格积分:通过外推技术加速数值积分的收敛速度。高斯积分:在特定的点(高斯点)上评估函数值,然后计算这些点的加权和,具有较高的精度。

2025-04-12 01:19:10 904

原创 SciPy科学计算库概述与开发环境搭建(一)

SciPy(发音为"Sigh Pie")是一个用于数学、科学和工程的开源软件。它提供了优化、积分、插值、特征值问题、代数方程、微分方程、统计和许多其他类型问题的算法[0SciPy建立在NumPy的基础上,提供了更高级的数值计算功能。它在各个领域都有广泛的应用,从物理学和工程学到数据分析和机器学习[1。

2025-04-12 00:53:49 861

原创 PyTorch模型部署:ONNX与TorchScript解析与优化指南(十五)

经典融合模式:Conv2d + BatchNorm + ReLU。C++ LibTorch加载。TorchScript导出。多线程Batch处理。REST API服务。

2025-03-15 18:13:11 1093

原创 使用PyTorch实现图像分类全流程实战(MNIST/CIFAR-10):从理论到部署指南(十四)

图像分类是计算机视觉的基石任务,掌握其全流程开发能力是算法工程师的核心竞争力。通过跳跃连接(shortcut)解决梯度消失问题。

2025-03-15 17:59:14 885

原创 PyTorch分布式训练与GPU加速指南:从DataParallel到DistributedDataParallel的深度解析(十三)

【代码】PyTorch分布式训练与GPU加速指南:从DataParallel到DistributedDataParallel的深度解析(十三)

2025-03-15 17:47:56 966

原创 PyTorch自定义网络层与损失函数实战指南(十二)

'swish': Swish() # 使用自定义激活。

2025-03-15 17:34:20 803

原创 PyTorch迁移学习指南:深入掌握预训练模型微调技术(十一)

数据集:COVID-19 Radiography Dataset(3000张,4类)

2025-03-15 11:26:46 771

原创 PyTorch模型持久化与迁移指南:从原理到实践(十)

保存策略选择开发阶段:完整模型+Checkpoint生产部署:状态字典+ONNX版本控制三要素代码版本(git commit)数据版本超参数配置安全加载四步验证文件完整性(哈希校验)架构兼容性设备可用性运行验证(前向推理测试)性能优化组合拳并行加载量化压缩增量更新灾难恢复方案异地多副本存储定期完整性检查自动化回滚机制。

2025-03-15 11:18:53 1024

原创 PyTorch训练过程可视化全解析:TensorBoard实战手册(九)

实现自定义仪表盘return {# 返回自定义HTML内容return ...

2025-03-15 09:54:49 977

原创 PyTorch模型验证与测试方法完全指南:从基础到进阶实践(八)

【代码】PyTorch模型验证与测试方法完全指南:从基础到进阶实践(八)

2025-03-15 09:44:34 754

原创 PyTorch模型训练全流程详解:从理论到代码实践(七)

在深度学习中,模型训练的本质是通过反向传播算法在参数空间中寻找最优解。这个过程可以形象地理解为:数学原理:对于输入数据X,经过L层神经网络的计算过程:h1=σ(W1X+b1)h2=σ(W2h1+b2)⋮y^=softmax(WLhL−1+bL)\begin{aligned}h_1 &= \sigma(W_1X + b_1) \\h_2 &= \sigma(W_2h_1 + b_2) \\&\vdots \\\hat{y} &= \text{softmax}(W_Lh_{L-1} + b_L)\

2025-03-15 08:55:27 829

原创 PyTorch损失函数与优化器深度解析:从原理到调参实战(六)

在深度学习模型的训练过程中,损失函数和优化器构成了驱动模型进化的双引擎系统。这个过程的效率和质量直接决定了模型的最终性能。优化器的核心任务是通过迭代更新。该特性使得梯度计算高效稳定。解决类别不平衡问题,

2025-03-15 08:46:45 605

原创 PyTorch神经网络构建基础:深入理解nn.Module与全连接网络实践(五)

提供了神经网络构建的标准化范式,使得从简单线性模型到复杂Transformer架构的开发都能保持代码的整洁性和可维护性。据2023年Stack Overflow开发者调查显示,PyTorch在科研领域的使用率已超过TensorFlow 2:1。PyTorch凭借其动态计算图(Dynamic Computation Graph)和直观的API设计,已成为深度学习领域的首选框架之一。,这是PyTorch实现神经网络模块化的基石。所有自定义网络必须继承。nn.Module基础。

2025-03-15 08:33:15 902

原创 PyTorch数据加载与预处理指南:从基础到分布式训练优化(四)

在ResNet-50训练中,GPU利用率仅为65%典型深度学习任务中,数据管道的可并行化比例。

2025-03-14 11:28:55 1052

原创 PyTorch自动微分机制深度解析:从原理到实践掌握反向传播精髓(三)

使用示例。

2025-03-13 12:06:21 811

原创 PyTorch张量(Tensor)操作手册:多维数据容器深度解析(二)

表示第i个维度的长度。:未设置requires_grad=True。张量是PyTorch的核心数据结构,是。:矩阵乘法时维度未对齐。

2025-03-13 11:48:54 725

原创 PyTorch安装与环境配置终极指南:从零搭建高效深度学习开发环境(一)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4aa8EKPI-1741833940953)(https://developer.nvidia.com/sites/default/files/akamai/cuda/images/overview/CUDA-Toolkit-Arch.png)]通过本文配置的环境,您已经具备了开展深度学习研究的坚实基础。Conda通过创建隔离的Python运行时环境,解决依赖冲突问题。conda list检查版本。

2025-03-13 10:48:43 1320

原创 实战:基于Pandas的房价数据分析全流程深度解析(附高阶技巧与数学推导)(十二)

fill:#333;color:#333;color:#333;fill:none;数据加载元数据分析数据清洗特征工程多维分析模型准备自动化报告。

2025-03-01 04:57:32 1126

30个论文的技术路线模板

30个论文的技术路线模板,可以套用写技术路线图

2025-02-11

用Python+Tkinter打造的专业级端口扫描器源代码

用Python+Tkinter打造的专业级端口扫描器源码,支持多线程扫描,且有GUI界面

2025-02-11

LSB隐写术实现、AES加密与LSB隐写术结合实现代码及相关论文(附带可视化界面)

其中LSB.py是LSB隐写术实现的源码,AES-LSB.py为AES加密与LSB隐写术结合实现代码,论文为复现的论文。 该代码实现了可视化界面,可通过可视化界面操作。

2025-02-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除