堆的概念结构及实现

文章详细介绍了堆的概念,包括小堆和大堆的定义,以及堆的性质。接着,文章阐述了堆的实现细节,如父子节点关系、向上排序算法、删除操作、向下排序算法、入堆操作以及堆的创建。在创建堆的方法中,文章对比了通过入堆实现和通过向下排序实现的两种策略。最后,提供了相关函数的声明、实现和测试代码。
摘要由CSDN通过智能技术生成

1.堆的概念及结构

如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

在这里插入图片描述

在这里插入图片描述

2.堆的实现

2.1父子节点之间的关系

在这里插入图片描述
在此之前,我们先了解一下父子节点之间的关系
leftchild=parent2+1
rightchild=parent
2+2
parent=(chile-1)/2

2.2堆的向上排序算法

在这里插入图片描述
正如图上所示,我们插入一个80节点,显然它比它的祖先都要大,所以我们要调整堆这就用到了向上调整法
在这里插入图片描述
思路就是这样 代码如下:

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;//定义父节点
	while (child > 0)//这里的判定条件可以有另外一种为parent>=0,
	虽然也可以实现函数但是当child=0时,parent=(0-1)/2=0,
	if语句不成立才break的,是非正常结束,所以不推荐
	{
		if (a[parent] < a[child])
		{
			Swap(&a[parent], &a[child]);//交换位置
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
	}

2.3 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法
在这里插入图片描述

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[php->size - 1], &php->a[0]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

2.4堆的向下排序算法

在这里插入图片描述

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = 2 * parent + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
			break;
	}
}

2.5入堆

void Heappush(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}

	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}

2.6堆的创建

2.6.1通过入堆实现(通过向上堆排序)

这种方法也是比较投机取巧的方法了

// 堆的构建
void HeapCreate(HP* php, HPDataType* a, int n)
{
	assert(php);
	HeapInit(php);
	for (int i = 0; i < n; ++i)
	{
		HeapPush(php, a[i]);
    }
}

这种方法的时间复杂度
在这里插入图片描述

2.6.2通过向下排序实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

void HeapCreate(HP* php, HPDataType* a, int n)
{
	assert(php);
	php->a = (HPDataType*)malloc(php->a, sizeof(HPDataType)*n);
	if (php->a == NULL)
	{
		perror("realloc fail");
		exit(-1);
	}
	memcpy(php->a, a, sizeof(HPDataType)*n);
	php->size = php->capacity = n;

	// 建堆算法
	for (int i = (n-1-1)/2; i>=0; --i)
	{
		AdjustDown(a, n, i);
	}
}

这种方法时间复杂度
在这里插入图片描述

2.6.3两种方法比较

两种方法比较来说
在这里插入图片描述
通过向下排序实现的创建堆方便太多了

2.7代码实现

2.7.1函数声明

#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<string.h>
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;

}HP;
void HeapInit(HP* php);
void HeapDestory(HP* php);
void Heappush(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
void HeapPrint(HP* php);
void HeapCreate(HP* php, HPDataType* a, int n);
void AdjustDown(HPDataType* a, int n, int parent);
void Swap(HPDataType* p1, HPDataType* p2);
void AdjustUp(HPDataType* a, int child);

2.7.2函数实现

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
void HeapCreate(HP* php, HPDataType* a, int n)
{
	assert(php);
	php->a = (HPDataType*)malloc( sizeof(HPDataType) * n);
	if (php->a == NULL)
	{
		perror("realloc fail");
		exit(-1);
	}
	memcpy(php->a, a, sizeof(HPDataType) * n);
	php->size = php->capacity = n;

	// 建堆算法
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(php->a, n, i);
	}
}
//void HeapCreate(HP* php, HPDataType* a, int n)
//{
//	assert(php);
//	HeapInit(php);
//	for (int i = 0; i < n; ++i)
//	{
//		Heappush(php, a[i]);
//	}
//}
void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = php->capacity = 0;
}
void HeapDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->capacity = php->size = 0;
}
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[parent] < a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}


}
void Heappush(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}

	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = 2 * parent + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
			break;
	}
}
void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[php->size - 1], &php->a[0]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}
bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}
void HeapPrint(HP* php)
{
	assert(php);
	for (int i = 0; i < php->size; ++i)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

2.7.3代码测试

#define _CRT_SECURE_NO_WARNINGS 1

#include"Heap.h"
void test()
{
	int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };
	HP hp;
	HeapInit(&hp);
	HeapCreate(&hp, array, 10);
	HeapPrint(&hp);
}
int main()
{
	test();
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值