01背包问题(朴素dp写法和优化)+蓝桥杯 倍数问题

文章讲述了如何将朴素的二维动态规划方法优化为一维,解决01背包问题,通过逆序遍历体积值避免了状态覆盖问题,以求解物品体积不超过背包容量下的最大价值。
摘要由CSDN通过智能技术生成

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,,用空格隔开,分别表示物品数量和背包容积。

接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

 图析:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>

using namespace std;

int n,m;
const int N=1010;
int f[N][N];//状态表示
int v[N],w[N];

int main()
{
    int res;
    cin >> n>> m;
    for(int i=1;i<=n;i++) cin >> v[i] >> w[i];
    
    //状态计算
    for(int i=1;i<=n;i++) 
        for(int j=0;j<=m;j++)
        {
            if(j<v[i])//不可以选i物品的情况
            f[i][j]=f[i-1][j]; 
            else //可以选i物品,分为选i还是不选,取两者最大价值
            f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]); 
        }
        
    cout << f[n][m]<<endl;
    
    return 0;
}
这是朴素的dp写法(不做过多详述),我觉得适用于开辟的数组数量较小题目,一旦数组数量变多,此二维数组空间则会受限,所以需要下面的优化方法,将其优化为一维数组;

此优化本质上就是对朴素dp写法的恒等变形,解释一下:

1-沿用上述图析里面的闫式DP分析,此时优化后的f[j]表示的集合的含义仍然是考虑前i个数,且总价值不超过j的选法的集合,f[j]的值也是其中所有选法的最大价值,表示优化后的整个逻辑不变;

2-不同之处在于这里我们针对前i个数遍历体积的值时,要改成逆序;(先简单提及,具体看下面例子);

先贴一下优化后的代码,我们来比较核心的不同之处:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int N=1010;

int n,m;
int v[N],w[N];
int f[N];

int main() {
    cin >> n >> m;
    for(int i=1;i<=n;i++) cin >> v[i] >> w[i];

    for(int i=1;i<=n;i++) 
        for(int j=m;j>=v[i];j--) 
            f[j]=max(f[j],f[j-v[i]]+w[i]);
    cout << f[m] << endl;
 return 0;    
}

朴素DP: 

for(int j=0; j<=m; j++)

        f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]); 

优化后的DP:

for(int j=m; j>=v[i]; j--) 
        f[j]=max(f[j], f[j-v[i]]+w[i]);

其实就是对一开始的状态转移方程f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]); 进行恒等变形后对枚举体积进行了逆序变换;

样例还是这个
4 5
1 2
2 4
3 4
4 5

起初的DP:
for(int i=1;i<=n;i++) 
        for(int j=0;j<=m;j++)
        {
            if(j<v[i])//不可以选i物品的情况
            f[i][j]=f[i-1][j]; 
            else //可以选i物品,分为选i还是不选,取两者最大价值
            f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]); 
        }

假如进行恒等变形不进行逆序的变换:
for(int i=1;i<=n;i++) 
        for(int j=0;j<=m;j++)
        {
            if(j<v[i])//不可以选i物品的情况
            f[j]=f[j]; 
            else //可以选i物品,分为选i还是不选,取两者最大价值
            f[j]=max(f[j],f[j-v[i]]+w[i]); 
        }
        
   
代入例子观察没有使用逆序的逻辑是否满足题干中的情况:
i==1(前i个物品)  v[1]==1,w[1]==2

j==0  f[0]=f[0]; 由于f[0]起初没有更新,开的全局数组其值默认就是0,所以f[0]值为0
j==1  由于j>=v[i],所以f[1]=max(f[1],f[1-v[1]]+w[1])=max(0,f[0]+2)=2,即f[1]==2;

j==2  由于j>=v[i],所以f[2]=max(f[2],f[2-v[1]]+w[1])=max(0,f[1]+2)=4,即f[2]==4;
注意这里,上述的代入数据推导f[2]==4是错误的,对于i==1,前1个数,不管当前体积是多少,最大价值永远都是选这1个数的总价值,即应该一直为w[1]==2,但是对于前1个数,当前体积为2时,最大价值却出现4,所以结果是错误的;


接下来,我们来分析一下为什么是错误的,这里我们在对状态转移方程恒等变形时,只是变换其形式,其逻辑是不变的,何为逻辑不变,对于两种情况:
(1) f[j]=f[j]; 左边是前i个数对应的j,右边是前i-1个数对应的j,更新之后左边的f[j]逻辑上是第i层的j,这里无伤大雅;
(2) 但是当进行f[j]=max(f[j],f[j-v[i]]+w[i]);假如j==2,f[2]=max(f[2],f[2-v[1]]+w[1])=max(0,f[1]+2),这里的f[1]根据朴素DP写法应该是第i-1层的f[1] (f[i-1][j-v[i]) ,但是由于优化后只有一维 j ,没有维度 i 限制到底是i-1层还是i层,所以f[1]其实是前面步骤更新的第i层的f[1],如(1)中所描述的一样,更新的左边的f[1]其实就是前i个数体积不超过1的价值;这就会导致期间状态更新会出现错误,然后一直错下去;
本质原因就是由于无维度限制,这会导致每次的i层的j会覆盖i-1层的j,等到下次用到状态转移方程时,本来想使用i-1层的j-v[i],其实是用的i层的j-v[i];


那为什么逆序就会解决这个问题呢:
f[j]=max(f[j],f[j-v[i]]+w[i]); ->  f[5]=max(f[5],f[5-1]+w[1]); 从大到小很好的解决了这个问题,因为当我们 需要 f[5] 的值时,我们要知道 小于5的数组的值,而这些小于5的数组还没被覆盖,值还是上一层的值,所以就用到了上一层的状态。这正好满足了我们对朴素DP的恒等变形;其实这种问题我们只要搞懂不使用逆序为什么是错误的,就可以很好的模拟例子来理解为什么逆序之后,可以正确的得出答案;


简化恒等变形:
for(int i=1;i<=n;i++) 
        for(int j=m;j>=v[i];j--)
        f[j]=max(f[j],f[j-v[i]]+w[i]); 

这就是我对01背包问题的一些自己的理解,欢迎大家补充讨论,找出更好的理解方法。

 稍后更新蓝桥杯倍数问题的概述,也是01背包问题的应用;

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值