昇腾AI入门课(PyTorch)
基于PyTorch模型迁移与调优+AI应用开发入门
目录
课程所需前置知识和软件
- 基础理论知识
1.1华为全栈解决方案
1.2 CANN架构介绍
1.3AscendCL介绍
- pytorch模型的迁移和调优
- AI应用开发简易流程
3.1 云服务器环境准备与申请
3.2 MobaXterm 的SSH链接
3.3 根据项目的readme文件完成AI应用开发
4.总结
课程所需前置知识
- 对深度学习和pytorch有一定基础
- 对Linux命令操作有一定了解
- 了解基本的python和C/C++语法
课程需要使用的软件
- MobaXterm
1基础理论知识
1.1华为AI全栈解决方案
关于理论知识方面,官方文档和活动视频的讲解会更加全面,这里仅做一定概括。
华为的AI全栈解决方案包括硬件,AI框架,CANN异构计算架构,相关SDK,部署平台生态等,其中,CANN作为软件和硬件之间的桥梁,向上兼容兼容多种AI框架,向下调用并加速硬件,是学习华为的AI全栈解决方案的重中之重。
1.2异构计算架构CANN
华为公司面向计算机视觉、自然语言处理、推荐系统、类机器人等领域量身打造了基于“达芬奇 (DaVinci)架构”的异腾(Ascend) A处理器,开启了智能之旅。为提升用户开发效率和释放异腾AI处理器澎湃算力,同步推出针对AI场景的异构计算架构CANN (Compute Architecture for Neural Networks),CANN通过提供多层次的编程接口,以全场景、低门槛、高性能的优势,支持用户快速构建基于Ascend平台的AI应用和业务。
异腾AI异构计算架构 (Compute Architecture for Neural Networks,CANN)被抽象成五层架构,如下图所示。
另外CANN本身还要连接上层的应用层和下层的计算硬件,具体功能可以看下方的一图解,在实际操作中,使用和感知较多的应该是其应用层。
1.3 AscendCL 应用开发框架
AscendCL (Ascend Computing Language,异腾计算语言) 是异腾计算开放编程框架,是对底层异腾计算服务接口的封装,它提供运行时资源(例如设备、内存等)管理、模型加载与执行、算子加载与执行、图片数据编解码/裁剪/缩放处理等API库,实现在异腾CANN平台上进行深度学习推理计算.图形图像预处理、单算子加速计算等能力。简单来说,就是统一的API框架,实现对所有资源的调用。