U-Net训练自己的数据集(pytorch)

1.下载U-Net训练网络

网络:链接:https://pan.baidu.com/s/1c-Fumks0bsYgo4BOzTkOzQ 
提取码:njwa

f941ae8cc03c0637b72bc98e9d70ecb4.png

预训练权重:链接:https://pan.baidu.com/s/1_NCV5Slr9uPKnFn9eX4AUA 
提取码:xz3y

fd850bac9765b60f5147fd368aacde91.png

 

2.数据集格式

选用voc数据格式

27325997c03db93167c9b8f4dfaab19f.png

 

 

7de2496f568a8d5b4467a336e13ae8d4.png

 

6d05f7d9d3ad046645e996e31c0c71af.png

3.数据集设置

(1)将自己的图片和标签文件放到VOCdevkit下相应文件夹内

(2)运行voc_annotation.py自动生成训练集和测试集.txt

4adcbe36056c1b19e4a0ca741dbf8734.png

 136bba264bb8e2d07deb73ece7fd9421.png

 

4.预训练权重

(1)将下载好的预训练权重放到model_data

f8e4ed5aa81bf3e28ba8d2e645fd4db3.png

 (2)修改train.py中权重文件路径

39d1d04cb163a00649c8e1259cdc5586.png

4.开始训练

根据注释内容修改对应的参数

num_classes指向检测类别的个数+1

a3efa1f1d6b5618187a38bf01f79c5c4.png

 

384bcf7cbd0df710ae4c0d522dbec311.png

(2)训练后的权重文件和日志文件位于logs中

e22e0996830f347ce69436bc564418e9.png

5.训练结果预测

 (1)训练结果预测需要用到两个文件,分别是unet.py和predict.py。
我们首先需要去unet.py里面修改model_path以及num_classes,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。
num_classes指向检测类别的个数+1。

修改unet.py中相应的文件路径,和类别数
45cf1608fdf4c8b7d074b51504181fbc.png

(2)运行prediect.py文件

035dc198d3ab129f7170d94579e9b2dc.png

参考:Predict-(训练必看)利用训练好的模型进行预测_哔哩哔哩_bilibili

 

 

 

 

 

 

 

 

 

 

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值