下载cuda和cudnn(11.8版本)

官方教程

CUDA:Installation Guide Windows :: CUDA Toolkit Documentation (nvidia.com)

cuDNN: Installation Guide :: NVIDIA Deep Learning cuDNN Documentation

cudn安装

判断自己应该下载什么版本的cuda?

打开nvidia(任务栏搜所框NVIDIA Control Panel)->选择左下角的系统信息->组件

23bfa94f7641454aa3f5990b87bcfea7.png

 如果没有找到NVIDIA Control Panel可以在微软应用商店里面搜索下载或

0966948035b34b2aaa33e2614d603498.png

 596948372ef041df8190d8f44dc51682.png

 版本向下兼容,可以选择低版本进行安装,比如我的版本是CUDN11.8.88我们可以选择CUDN11.8.0进行安装。

ec23b4ae454a47d7ab254ef3e50fdf6f.png

 根据自己的配置选择相对应的版本(这里我们是win11,建议选择离线安装)

4d6228b54d3a46499900e60dda56f628.png

 

点击下载好的离线文件进行安装

7b790e9d2ff84d82ac492109f436d029.png

cuda安装

安装cuda时,第一次会让设置临时解压目录,第二次会让设置安装目录;

临时解压路径,建议默认即可,也可以自定义。安装结束后,临时解压文件夹会自动删除;

安装目录,建议默认即可;

双击下载好的文件,选择下载路径(推荐默认路径)

5cf0259dfb084bcf894023963412c0c0.png

 

cf3ea0d19d054041b95603962c87cb0a.png

61f1cd3466e3413e88381f84a77c7ae1.png

点击同意并继续

7146f70e62224393aab0834e39430feb.png

点击自定义安装,精简版本是下载好所有组件,推荐自定义下载

d8b650e9033c40908978d63f1411482d.png

第一次安装,尽量全选

3593aea375834ebe8c83605f475bf239.png

 

这里可以更改CUDN的安装位置此处安装目录不建议修改,因为后期开发中很多报错来源于路径问题。

cf88c3618f1949a6a284ac1832d93575.png

a0cd5c92dd604faca40de772abfd5f85.png

7cc49aa487c74284a513ab33c3f8507e.png

19d079b645b146d98197a4222f799cd7.png

查看这里可以具体安装

 

f468b45a911246088b9481635f4533cb.png

打开控制面板即可发现安装了一大堆配置和驱动文件。

右击此电脑点击属性

66ec4ff5ced8420b983e32a427b0e630.png

 

4319fc6415ce43778b95239fceeb2cf4.png

597942c484e543fca5c5d2314114d050.png

打开环境变量查看环境变量是否都安装好

3770f4633a5e4d9a97b261a7508281c2.png

验证CUDA是否安装成功:

win+R键运行cmd,输入nvcc --version 即可查看版本号;

nvcc --version
set cuda

set cuda,可以查看 CUDA 设置的环境变量。

3501347e71b54579af835cede9fa443f.png

9fec04586c4046c9b4988c5daab68e3a.png

 

 

cuDNN下载及安装

cuDNN下载

cuDNN地址如下,不过要注意的是,我们需要注册一个账号,才可以进入到下载界面。大家可以放心注册的。(可以使用自己的qq邮箱进行注册)

cuDNN Download | NVIDIA Developer

76c0690233b04f1db7e49a3d58c265b7.png

 d8fc28c5c5114337b6a52dfe66728f3f.png

 

选择跟自己的cuda版本适配的cudnn版本,此处我安装的是CUDA11.8,因此我选取下面的版本:

cuDNN Archive | NVIDIA Developer

 

cb5ce33c9bd343c799f5d4ccacee2ad0.png

 解压下载好的文件夹

dd82f580ce7747faa665ba454a6bc4df.png

 8a70b4df205348be80fc028e4395beec.png

 复制粘贴到安装好的cuda的文件夹里,如果找不到可以查看环境变量中的系统变量

72810bc80eb84e499ae0af9fabdf8f6c.png

 cuDNN 其实是 CUDA 的一个补丁,专为深度学习运算进行优化的。然后再添加环境变量

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

bfe4b620610648eebd299ed12a83151d.png

 

验证配置是否成功

配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:

首先win+R启动cmd,cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),得到下图:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8
cd.\extras\demo_suite
bandwidthTest.exe
deviceQuery.exe

5a6945430f9c46bb9be8e89d55aaa1e3.png

 29aae6fefaee46d39bca21b3bea396bf.png

 72298641759649f8b95b86da0f759340.png

 

 

 

### 下载并安装 NVIDIA cuDNN 庿 #### 准备工作 在开始下载安装 cuDNN 之前,需确认已正确配置好环境。具体来说,需要先完成 NVIDIA 显卡驱动程序的安装以及适合当前系统的 CUDA 工具包版本的选择与安装[^1]。 #### 获取 cuDNN 安装包 cuDNN 的官方下载地址位于 NVIDIA 开发者网站上。通过访问链接 https://developer.nvidia.com/rdp/cudnn-archive 可以找到对应于不同 CUDA 版本cuDNN 安装文件[^2]。需要注意的是,在此页面注册开发者账号可能是一个必要条件以便获取完整的权限来下载所需的资源。 #### 配置本地开发环境 一旦成功下载cuDNN 文件之后,则按照所选平台的具体指导来进行解压设置路径变量等工作流程。例如对于 Linux 用户而言通常涉及将头文件复制到 `/usr/local/cuda/include` 而共享对象则放置至 `/usr/local/cuda/lib64` 中去[^4];而在 Windows 上可能会有所不同但总体思路一致即确保编译器能够定位这些新增加的支持材料位置处。 另外值得注意的一点是关于图形API方面,cuDNN 提供了一种新的方式——“Graphs”,它允许更灵活高效地定义执行计划并通过高级别的C++接口或者低级一点但是兼容性更好的纯C函数调用来操作整个计算过程,这使得构建复杂模型变得更加容易同时也提高了性能表现水平[^5]. ```bash tar -xzvf cudnn-11.8-linux-x64-v8.9.0.27.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/lib64/libcudnn* ``` 以上命令展示了如何在一个典型的Linux环境中部署cuDNN库的一个例子(假设已经存在合适的CUDA基础结构). #### 测试验证 最后一步就是检验刚才所做的全部努力成果是否有效果啦!可以编写一段简单的测试代码如下所示: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` 如果一切正常的话应该可以看到至少有一个可用设备被识别出来. ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值