- 博客(77)
- 收藏
- 关注
原创 aria2 安装与配置完整指南(Windows 10/11)
是一个轻量级、多线程的命令行下载工具,比 PowerShell 原生命令(如)快 3-10 倍。本指南将手把手教你在 Windows 上安装并配置 aria2,使其全局可用。
2025-12-19 20:24:44
392
原创 DeepSearchAgent 项目改造总结:本地Ollama模型替代DeepSeek API
本次改造以「本地免费替代付费API」为核心,通过 Ollama 实现 DeepSeek 模型本地化部署,同时保持项目原有功能完整性。改造后项目更适合个人开发者、学生等无付费需求的用户,且部署流程简单,无需复杂环境配置,是一个低成本、高实用性的深度搜索工具。
2025-11-12 20:26:50
1090
原创 大模型领域部分资源平台汇总
通过上述资源,开发者可在无需科学上网的情况下,构建从代码获取、模型训练到部署的完整研发闭环。建议根据具体需求选择2-3个平台深度整合,并定期关注镜像站状态更新(如HF-Mirror的状态页:https://hf-mirror.com/status)。
2025-11-08 14:51:29
639
原创 config.json 完全指南:项目配置的核心实践
config.json 是项目的“配置中枢”,本质是用“数据驱动”替代“硬编码”。通过它可快速调整项目行为,无需修改代码,大幅提升项目灵活性、可维护性,是现代项目/API 开发的必备组件。
2025-11-07 21:20:59
747
原创 MDocAgent 论文完整解析:多模态多智能体破解DocQA核心痛点
DocQA(Document-based Question Answering)即“基于文档的问答任务”,核心是从包含文本、图表、表格、图像的复杂文档中,精准回答用户自然语言问题。学术论文分析(提取实验数据、对比模型性能)自动化办公(解析报告、提取关键信息)信息检索(从长文档中定位核心答案)验证一致性:核对aG、aT、aI的核心事实(如三者是否均提到“0.600准确率”);补充互补细节:整合单一模态的专属信息(如文本aT的“提升21.0%”+ 图像aI的“M3DocRAG准确率0.390”)
2025-11-07 20:59:40
837
原创 虚拟环境安装库却流入全局?原因+排查+解决方案
虚拟环境安装库流入全局的核心是“路径未正确指向”,排查时围绕“激活状态→命令路径→环境完整性→IDE同步”四个维度,就能快速定位问题。遵循最佳实践,可从根源上避免此类问题,让项目依赖隔离更可靠。
2025-11-05 22:01:49
963
原创 专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
参数名作用修改示例DATASET_ID目标数据集唯一标识下载SQuAD数据集改为squad,下载DocVQA改为docvqaLOCAL_DIR本地保存路径保存到D盘改为多线程数(影响下载速度)网络差改为2,网络好改为8。
2025-10-31 21:52:34
886
原创 Windows下正确生成项目结构的方法
缺失,就是之前项目解压不完整,需要重新下载/解压;如果结构完整,再回到之前的。如果觉得命令行麻烦,直接在PyCharm中新建一个。问题,按“添加Python路径”的方法解决即可。没有直接“仅显示目录”的参数,但可通过。后,重点检查是否包含以下关键结构(确保。里的内容发给我,我帮你进一步排查。无论用哪种方法,打开生成的。生成结构后,你可以直接复制。
2025-10-27 19:39:37
312
原创 深度学习核心模型详解:CNN与RNN
卷积神经网络(CNN)和循环神经网络(RNN)是深度学习中处理两类核心数据的基石模型:CNN擅长捕捉空间特征(如图像),RNN擅长处理序列依赖(如文本、语音)。本文将从原理、结构、易错点到代码实现全面解析,适合作为学习笔记或技术博客参考。CNN通过卷积和池化捕捉空间规律,是计算机视觉的核心工具。RNN(及改进版)通过循环结构处理序列依赖,在自然语言处理中不可或缺。实际应用中两者常结合(如CNN提取视频帧特征+RNN分析时序关系),需根据数据类型灵活选择。
2025-10-25 21:06:34
1554
原创 长短期记忆网络(LSTM)与门控循环单元(GRU)详解
普通循环神经网络(RNN)因「梯度消失/爆炸」问题难以处理长序列(如超过100个时间步的文本、语音)。长短期记忆网络(LSTM)和门控循环单元(GRU)通过门控机制解决这一问题,成为处理序列数据的核心模型。本文从原理、结构、实现到应用全面解析,适合作为学习笔记或技术博客。LSTM结构更复杂但记忆能力更强,适合超长序列和高精度需求;GRU简化高效,适合中等长度序列和资源受限场景。实际应用中,建议先尝试GRU(开发速度快),若性能不足再换LSTM;同时结合双向结构和注意力机制进一步提升效果。
2025-10-25 21:04:23
1231
1
原创 四、高效注意力机制与模型架构
Transformer原生的注意力机制,要求序列中每个token都与其他所有token计算注意力权重,是模型捕捉全局语义关联的核心,但也是效率瓶颈的根源。通过限制注意力计算的范围(仅让每个token与部分token关联),将复杂度从On2O(n^2)On2降为On×kOn×kkkk为每个token的关联数量,通常k≪nk \ll nk≪n),是长序列处理的主流优化方向之一。通过核函数变换或低秩近似,将注意力计算中的QKTQK^TQKTn×n。
2025-10-25 20:59:41
904
原创 三、检索增强生成(RAG)技术体系
定义:一种融合“信息检索”与“文本生成”的技术,通过在生成阶段引入外部检索到的相关知识片段,提升生成内容的准确性、时效性和可信度,同时减少模型幻觉(生成虚假信息)。核心解决的问题知识过时:大模型的训练数据有时间窗口(如GPT-4训练数据截止2023年4月),无法回答最新事件(如2024年奥运会冠军),RAG可通过检索实时数据补充。事实幻觉:大模型可能生成看似合理但错误的信息(如“爱因斯坦发明了电灯”),RAG通过引用检索到的权威文档验证事实。专业知识不足。
2025-10-25 20:58:44
552
原创 二、模型训练与参数高效微调范式
一类轻量级微调方法的统称,核心思想是"冻结预训练模型的大部分参数,仅学习一个’增量参数(Delta)'",模型最终输出为"预训练参数+增量参数"的组合(即fx;θΔθf(x;fx;θΔθ,其中θ\thetaθ是预训练参数,ΔθΔθ是增量参数)。一种通过"低秩矩阵分解"来参数化增量的高效微调方法,核心是将高维权重更新分解为两个低维矩阵的乘积,大幅减少可训练参数。
2025-10-25 20:56:41
720
原创 一、基础预训练模型与能力
描述模型性能与"模型参数量、训练数据量、计算资源"三者之间的数学关系,核心结论是"性能随资源规模增长按幂律提升,且未出现明显天花板",为大模型的设计与优化提供理论指导。
2025-10-25 20:56:13
869
原创 Transformer
Transformer通过注意力机制实现了并行计算(比RNN快),并能捕捉长距离依赖。嵌入层+位置编码:将词和位置转换为向量。多头注意力:并行捕捉多维度关联。前馈网络:增强非线性表达。残差连接+层归一化:稳定训练。编码器+解码器:分别处理输入和输出,通过交叉注意力关联。上述代码可直接用于文本翻译、摘要等序列到序列任务,后续只需添加数据预处理和训练逻辑即可。
2025-10-20 20:03:47
863
原创 6. 编码器层(EncoderLayer):Transformer编码器的“基本功能单元”
编码器层是Transformer处理输入序列的“最小功能单元”,通过“自注意力(全局交互)+ 前馈网络(局部加工)+ AddNorm(稳定训练)”的组合,实现了“既懂全局关系,又懂局部细节”的特征提取。堆叠6层后,就能捕捉输入序列的复杂上下文信息,为后续解码器生成准确的目标序列(如翻译结果)提供关键支持。编码器层=全局交互(自注意力)+ 局部加工(前馈网络)+ 稳定保障(AddNorm),堆叠起来就是强大的输入特征提取器。
2025-10-20 20:02:15
952
原创 8. 完整Transformer模型:从输入到输出的“端到端翻译机”
源序列先经过“嵌入+位置编码”预处理,再由编码器(6层)提取上下文特征(memory);目标序列同样预处理后,由解码器(6层)结合memory,通过“自约束(掩码自注意力)+ 跨对齐(交叉注意力)”生成目标特征;最后由输出层将特征映射到目标词汇表,完成预测。所有模块围绕设计,通过掩码保证训练合理性,通过堆叠层数提升特征能力——这就是Transformer能在翻译、文本生成等任务中表现卓越的根本原因。
2025-10-20 19:59:46
764
原创 7. 解码器层(DecoderLayer):Transformer的“目标序列生成器”
解码器层通过“掩码自注意力(约束自身)+ 交叉注意力(对齐输入)+ 前馈网络(加工特征)”的三步流程,实现了“在不偷看未来词的前提下,结合输入序列信息,逐步生成高质量目标序列特征”的核心任务。解码器层=“自约束”(掩码自注意力)+“跨对齐”(交叉注意力)+“细加工”(前馈网络),堆叠起来就是Transformer的“目标序列生成引擎”。
2025-10-20 19:59:25
720
原创 5. 残差连接与层归一化(AddNorm):让深层网络“稳得住、学得动”
层归一化(Norm):管“输入分布稳定”,让子层不用适应变化的输入,训练效率高;残差连接(Add):管“梯度传递顺畅”,让深层网络的梯度不消失,浅层也能学到东西;配合Dropout防过拟合,三者共同构成了Transformer深层训练的“稳定器”——没有AddNorm,Transformer根本堆不到6-12层,也无法实现优异的性能。Norm定标准,Add开捷径,Dropout防过拟合,三者一起让深层网络“稳得住、学得动”。
2025-10-20 19:58:58
959
原创 4. 前馈网络(FeedForward):给每个词“做深度加工”
前馈网络通过“升维(扩空间)→激活(加非线性)→降维(浓缩)”的过程,对每个词的向量做深度加工,弥补了注意力机制“重全局、轻局部”的不足。注意力机制让模型“懂句子结构”,前馈网络让模型“懂词的细节”,两者结合让模型既能看整体,又能钻细节,最终实现更强的序列建模能力。如果想直观感受前馈网络的作用,可以对比“只有注意力机制”和“注意力+前馈网络”的模型性能——后者在几乎所有NLP任务(翻译、文本分类等)中表现都更好,这正是前馈网络“非线性加工”的功劳。
2025-10-20 19:58:33
792
原创 3. 注意力机制(Attention):让模型学会“聚焦重点”
动态聚焦:不同于RNN的“固定窗口”,注意力能根据输入内容动态调整关注的位置(比如长句子中,远处的相关词也能被重点关注)。并行计算:注意力的所有步骤(点积、softmax等)均可并行处理,比RNN的顺序计算快得多(这是Transformer在长序列任务中领先的关键)。可解释性:注意力权重可可视化,直观展示模型关注了哪些词(如翻译时“猫”的权重对应“cat”),方便调试和理解模型行为。
2025-10-20 19:58:12
890
原创 2. 位置编码(PositionalEncoding):给序列“打上顺序标签”
原代码中的切片操作,本质是“让pe的序列长度和词嵌入一致”,满足广播规则——这是两者能相加的前提,少了这一步会直接报错。核心逻辑:通过固定的正弦余弦公式,为每个位置生成唯一的向量,与词嵌入相加,注入位置信息。加维度(适配广播)、算基础值(给sin/cos供原料)、切片匹配长度(满足广播相加)。最终效果:让模型在并行处理所有词的同时,能清晰分辨“谁在前、谁在后”,从而正确理解句子的语序和语义。
2025-10-20 19:57:32
739
原创 Transformer——嵌入层(Embeddings)
嵌入层的核心功能是“离散→连续”的转换:通过可训练的查找表,将词索引映射为高维向量,并通过缩放确保与位置编码协同工作。它是模型理解“语义”的基础,后续的注意力机制、前馈网络等模块,都依赖于嵌入层输出的连续向量进行计算。
2025-10-20 19:56:40
737
原创 Conda 常用命令汇总(新手入门笔记)
通过以上内容,可满足conda环境管理、包安装及PyTorch配置的核心需求,新手可逐步实践并熟悉细节。
2025-10-18 11:32:27
1500
原创 LLM入门笔记:注意力机制与输出预测
注意力机制是LLM的"核心大脑",作用类似人类看书时的"选择性聚焦"——让模型在处理每个词时,自动关注句子中最相关的部分。句子:“小明丢了书包,他很着急”人类会自动知道"他"指的是"小明"注意力机制就是让模型学会这种"关联能力",让"他"重点关注"小明"的信息输入文本 → 嵌入向量(语义)+ 位置编码(顺序) → 多头注意力(聚焦重点) → 层归一化+前馈网络(加工信息) → 重复多层处理 → 线性层+Softmax(预测下一个词)
2025-10-16 20:02:59
1108
原创 大语言模型(LLM)入门笔记:嵌入向量与位置信息
你可以把嵌入向量理解成文字的"数字翻译器"。计算机看不懂"猫""狗"这些文字,只能处理数字,嵌入向量就负责把文字转换成一串数字(比如),同时还保留了文字的意思。位置信息就是给句子中的每个词打上"位置标签",告诉模型这个词在句子中排第几。对比项嵌入向量位置信息核心功能表示"词的意思"表示"词的顺序"比喻文字的"数字指纹"队伍的"编号牌"模型依赖所有LLM都必须有基于Transformer的LLM必须有常见问题一词多义处理长文本位置信息衰减。
2025-10-16 20:02:12
1225
原创 咒语和药水的成功对数
本题的最优解法通过排序+二分查找将时间复杂度从暴力法的O(n*m)优化至,完美适配10^5级别的数据规模。排序药水数组,为高效查询奠定基础;对每个咒语计算临界药水值,利用二分查找快速定位符合条件的药水范围;通过整数运算精准实现向上取整,避免浮点数精度问题。这种方法兼顾了时间效率和实现简洁性,是处理此类“范围查询”问题的典型范式。
2025-10-08 21:20:08
294
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记大纲
PyTorch 数据处理(Tensor+Dataset+DataLoader)Softmax(原理 + 网络适配 + PyTorch 框架)K 均值算法(原理 + 优化目标 + 初始化 + 聚类数选择)核心概念(回报 + 策略 + 状态 - 动作值函数)正则化应用(成本函数 + 线性回归 + 逻辑回归)典型应用(图像识别 + 需求预测 + 月球着陆器)异常检测算法(流程 + 评估 + 与监督学习对比)数据集划分(训练集 + 交叉验证集 + 测试集)训练策略优化(贪婪策略 + 小批量 + 软更新)
2025-10-08 20:03:23
872
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:3.4 强化学习
问题类型具体表现解决方案训练不收敛奖励曲线震荡不上升,损失曲线发散1. 降低学习率;2. 加入经验回放;3. 使用目标网络;4. 状态标准化过估计Q值估计远高于实际回报(如DQN)1. 使用Double DQN;2. 减小折扣因子γ\gammaγ;3. 增加正则化探索不足智能体陷入局部最优(如探测器一直走同一条路)1. 增大初始εε;2. 加入内在奖励;3. 使用汤普森采样样本效率低需大量episode才能收敛(如百万级step)1. 预训练价值网络;
2025-10-08 19:53:26
1078
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
推荐系统的基本原理和不同类型的方法基于内容过滤和协同过滤的核心算法与实现数据处理技术,包括二进制标签处理和均值归一化完整的PyTorch推荐系统实现框架大规模推荐场景的适配策略推荐系统的伦理问题和应对方案在实际应用中,推荐系统的成功不仅取决于算法的先进性,还需要考虑业务场景、数据特性、用户体验和伦理责任。建议在实践中持续进行A/B测试,监控推荐效果,并重视用户反馈。
2025-10-08 19:52:57
704
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:3.2 降维技术详解(PCA)
降维是指将高维数据转换为低维表示的过程,同时尽可能保留原始数据的关键信息。在机器学习中,当特征数量过多时,会出现"维度灾难"问题,降维技术能有效解决这一问题。PCA的数学原理和算法流程使用PyTorch实现PCA的多种方法主成分数量选择的策略PCA的注意事项和局限性高级PCA变体的实现在实际应用中,要根据数据特性和任务需求选择合适的降维方法,并注意数据预处理和参数调优。PCA作为线性降维的基准方法,为理解更复杂的降维技术奠定了重要基础。
2025-10-08 17:07:14
858
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:3.1 无监督学习基础
无监督学习(Unsupervised Learning)是机器学习的重要分支,其核心特点是从无标签数据中自动发现潜在的模式、结构或规律。与监督学习依赖人工标注的标签不同,无监督学习更接近人类认知世界的方式——通过观察和归纳自主形成概念。聚类(Clustering)是无监督学习的核心任务之一,其目标是将数据集划分为若干个簇(Cluster),使得同一簇内的样本具有较高的相似性,而不同簇的样本具有较低的相似性。数学描述:给定数据集 X={x1,x2,...,xn}X = \{x_1, x_2, ..., x_n
2025-10-08 17:02:32
730
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:2.5 反向传播与训练优
反向传播通过链式法则高效计算梯度,PyTorch的自动求导机制简化了这一过程,但需注意梯度清零和计算图管理。训练细节决定模型能否有效收敛,包括正确切换训练/评估模式、选择合适的优化器和学习率调度策略,以及实现完整稳定的训练循环。网络架构改进是提升性能的重要途径,残差连接解决了深层网络的梯度问题,批量归一化加速了训练,注意力机制和高效卷积操作提高了特征提取能力。训练策略优化。
2025-10-08 16:46:13
1195
原创 吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
在深度学习中,激活函数为网络引入非线性能力,是实现复杂模式建模的核心;而多类别处理则是解决实际分类任务(如图像识别、文本分类)的关键技术。本章将系统讲解激活函数的类型、选择依据,以及多类别分类的实现方案(含Softmax原理与PyTorch适配),并扩展至多输出分类场景。激活函数(Activation Function)是神经网络中连接“线性变换”与“非线性建模”的桥梁。没有激活函数,无论多少层的神经网络都等价于单层线性模型,无法拟合复杂数据分布。按函数形态和应用场景,激活函数可分为以下几类:特点:输入值过
2025-10-08 16:43:50
1284
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:2.3 PyTorch 工具与高效实现
import os# 1. 基础自定义数据集"""简单数据集示例""""""参数:data_size: 数据集大小input_dim: 输入特征维度num_classes: 类别数量"""# 生成随机数据"""返回数据集大小""""""根据索引返回数据和标签"""# 2. 图像数据集"""图像数据集示例""""""参数:image_dir: 图像文件夹路径label_file: 标签文件路径transform: 图像预处理变换"""# 读取标签文件。
2025-10-08 16:28:39
480
原创 吴恩达机器学习课程(PyTorch适配)学习笔记:2.2 前向传播与推理
准备输入数据:获取并预处理新的输入数据加载模型与参数:加载训练好的模型结构和权重参数执行前向传播:将输入数据通过模型进行前向计算解析输出结果:将模型输出转换为有意义的预测结果返回最终预测:以合适的形式返回推理结果。
2025-10-08 16:17:04
1116
原创 吴恩达机器学习课程(PyTorch 适配)学习笔记:2.1 基础概念与网络结构
深度学习(Deep Learning)是一类基于深层神经网络的机器学习方法,其核心思想是通过多层非线性变换从数据中自动学习特征表示,而无需人工设计特征提取器。自动特征学习:从原始数据中自动学习层次化的特征表示深层结构:通常包含多个非线性变换层强大的拟合能力:能够建模复杂的非线性关系数据驱动:性能随着数据量增加而提升。
2025-10-08 15:57:21
754
DeepSearchAgent-Demo 项目改造总结:本地Ollama模型替代DeepSeek API
2025-11-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅