numpy基本用法

NumPy 是 Python 中用于科学计算的基础库,提供了高性能的多维数组对象以及处理这些数组的工具。以下是 NumPy 的一些基本用法:

1. 安装与导入

在使用 NumPy 之前,需要先安装它。如果你使用的是 pip,可以通过以下命令安装:

pip install numpy

安装完成后,在 Python 脚本中导入 NumPy

import numpy as np

2. 创建数组

从 Python 列表创建
import numpy as np

# 创建一维数组
a = np.array([1, 2, 3, 4, 5])
print("一维数组:", a)

# 创建二维数组
b = np.array([[1, 2, 3], [4, 5, 6]])
print("二维数组:", b)
使用 arange 函数
import numpy as np

# 创建一个从 0 到 9 的数组
c = np.arange(10)
print("使用 arange 创建的数组:", c)
使用 zerosones 函数
import numpy as np

# 创建一个全为 0 的数组
d = np.zeros((2, 3))
print("全为 0 的数组:", d)

# 创建一个全为 1 的数组
e = np.ones((3, 2))
print("全为 1 的数组:", e)

3. 数组的基本属性

import numpy as np

b = np.array([[1, 2, 3], [4, 5, 6]])

# 数组的形状
print("数组的形状:", b.shape)

# 数组的维度
print("数组的维度:", b.ndim)

# 数组中元素的总数
print("数组中元素的总数:", b.size)

# 数组中元素的类型
print("数组中元素的类型:", b.dtype)

4. 数组的索引和切片

一维数组
import numpy as np

a = np.array([1, 2, 3, 4, 5])

# 访问第一个元素
print("第一个元素:", a[0])

# 切片操作
print("从索引 1 到索引 3 的元素:", a[1:4])
二维数组
import numpy as np

b = np.array([[1, 2, 3], [4, 5, 6]])

# 访问第一行第二列的元素
print("第一行第二列的元素:", b[0, 1])

# 访问第一行的所有元素
print("第一行的所有元素:", b[0, :])

# 访问第二列的所有元素
print("第二列的所有元素:", b[:, 1])

5. 数组的运算

基本数学运算
import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# 加法
print("加法:", a + b)

# 减法
print("减法:", a - b)

# 乘法
print("乘法:", a * b)

# 除法
print("除法:", a / b)
矩阵乘法
import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# 矩阵乘法
print("矩阵乘法:", np.dot(a, b))

6. 数组的统计函数

import numpy as np

a = np.array([1, 2, 3, 4, 5])

# 计算数组的平均值
print("数组的平均值:", np.mean(a))

# 计算数组的标准差
print("数组的标准差:", np.std(a))

# 计算数组的最大值
print("数组的最大值:", np.max(a))

# 计算数组的最小值
print("数组的最小值:", np.min(a))

这些是 NumPy 的一些基本用法,NumPy 还有很多其他强大的功能,如数组的重塑、排序、随机数生成等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值