NumPy
是 Python 中用于科学计算的基础库,提供了高性能的多维数组对象以及处理这些数组的工具。以下是 NumPy
的一些基本用法:
1. 安装与导入
在使用 NumPy
之前,需要先安装它。如果你使用的是 pip
,可以通过以下命令安装:
pip install numpy
安装完成后,在 Python 脚本中导入 NumPy
:
import numpy as np
2. 创建数组
从 Python 列表创建
import numpy as np
# 创建一维数组
a = np.array([1, 2, 3, 4, 5])
print("一维数组:", a)
# 创建二维数组
b = np.array([[1, 2, 3], [4, 5, 6]])
print("二维数组:", b)
使用 arange
函数
import numpy as np
# 创建一个从 0 到 9 的数组
c = np.arange(10)
print("使用 arange 创建的数组:", c)
使用 zeros
和 ones
函数
import numpy as np
# 创建一个全为 0 的数组
d = np.zeros((2, 3))
print("全为 0 的数组:", d)
# 创建一个全为 1 的数组
e = np.ones((3, 2))
print("全为 1 的数组:", e)
3. 数组的基本属性
import numpy as np
b = np.array([[1, 2, 3], [4, 5, 6]])
# 数组的形状
print("数组的形状:", b.shape)
# 数组的维度
print("数组的维度:", b.ndim)
# 数组中元素的总数
print("数组中元素的总数:", b.size)
# 数组中元素的类型
print("数组中元素的类型:", b.dtype)
4. 数组的索引和切片
一维数组
import numpy as np
a = np.array([1, 2, 3, 4, 5])
# 访问第一个元素
print("第一个元素:", a[0])
# 切片操作
print("从索引 1 到索引 3 的元素:", a[1:4])
二维数组
import numpy as np
b = np.array([[1, 2, 3], [4, 5, 6]])
# 访问第一行第二列的元素
print("第一行第二列的元素:", b[0, 1])
# 访问第一行的所有元素
print("第一行的所有元素:", b[0, :])
# 访问第二列的所有元素
print("第二列的所有元素:", b[:, 1])
5. 数组的运算
基本数学运算
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
# 加法
print("加法:", a + b)
# 减法
print("减法:", a - b)
# 乘法
print("乘法:", a * b)
# 除法
print("除法:", a / b)
矩阵乘法
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
# 矩阵乘法
print("矩阵乘法:", np.dot(a, b))
6. 数组的统计函数
import numpy as np
a = np.array([1, 2, 3, 4, 5])
# 计算数组的平均值
print("数组的平均值:", np.mean(a))
# 计算数组的标准差
print("数组的标准差:", np.std(a))
# 计算数组的最大值
print("数组的最大值:", np.max(a))
# 计算数组的最小值
print("数组的最小值:", np.min(a))
这些是 NumPy
的一些基本用法,NumPy
还有很多其他强大的功能,如数组的重塑、排序、随机数生成等。