算法分析与设计复习__递归方程与分治

总结自:【算法设计与分析】期末考试突击课_哔哩哔哩_bilibili

1.递归,递归方程

1.1递归条件:

1.一个问题的解可以分解为几个子问题的解;

2.这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样;

3.存在递归终止条件。

1.2递归方程的建立,求解

1.2.1建立

当算法包含调用自身的过程时,其运行时间可用递归方程描述,

下面是递归方程建立的具体过程:假设问题规模为",T(m)为解决该问题的时间开销。

1.2.2求解

常用的求解递归方程的方法有两种:替换方法和主定理

1.2.2.1替换方法


用替换方法解某个递归方程时,分为两步。
首先是猜测问题解的某个界限,然后用数学归纳法证明所猜测解的正确性。猜测问题的界限可以根据经验猜,也可以把递归方程逐项展开,再对项进行合并根据合并结果猜测问题的界限。

1.2.2.2主定理(较简单,套公式即可)

1.2.2.3主定理不能解决的部分:

1.2.3例题

斐波那契序列,欧几里得算法,汉诺塔,阶乘;

1.2.3.1替换方法例题:
1.2.3.2主定理例题:

1.2.3.3 参考答案

T1:

T2:

T3:

T4:

T5:

T6:

T7:

1.3 分治法

分治法的思想:

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值