精准洞察股市的“心跳”和“血压”,助您交易决策无往不利

作者:老余捞鱼

原创不易,转载请标明出处及原作者。

写在前面的话:
       
我之前写过一篇《神奇的 VROC 力量,让你敏锐感知股市的心跳节奏》,把 VROC(成交量变化率)比作市场的心跳。那么,RSI(相对强弱指数)就可以看作是市场的血压指数。今天我准备和大家聊聊如何参考 VROC(交易量变化率)和 RSI(相对强弱指数)这两个指标来进行日内交易,并且会像之前一样,给大家提供一个代码级的交易仪表板,用来实例分析股市指数前 50 股票的交易数据。

一、什么是 VROC 和 RSI?

1.1 VROC ( 交易量变化率)

       VROC(Volume Rate of Change),该指标衡量特定时期内交易量的百分比变化。VROC 上升可能预示着对某只股票的兴趣在增加,反映了市场活跃度的变化,有助于交易者识别成交量突然增加或减少的情况,这些变化往往预示着潜在的价格变动。当成交量快速变化时,就可能有大事发生。

       更多的 VROC 介绍看这篇:《神奇的 VROC 力量,让你敏锐感知股市的心跳节奏》

1.2 RSI (相对强弱指数)

       RSI(Relative Strength Index),一种技术分析工具,主要用于评估某个特定资产(如股票、期货、外汇等)的价格波动方向和强度。该指标最早由金融分析师威尔斯·威尔德(Welles Wilder)在1978年提出,并广泛应用于各类交易市场中。

       这种动量震荡指标评估价格变动的速度和变化,有助于识别超买或超卖情况。RSI 低于 30?这可能预示着一个潜在的买入信号,而 RSI 超过 70 则表明是时候卖出了!读到这里,有没有一种看血压计的感觉,高压70,低压30,超过了就要预警,怎么样,我的比喻还算恰当吧?

1.3 RSI 的计算公式

       RSI = 100 × RS / (1 + RS),其中RS = N天内收市价上涨数之和的平均值 / N天内收市价下跌数之和的平均值。具体计算步骤如下:

  1. 确定时间周期N(如14天)。
  2. 计算N天内的每日收盘价的涨跌情况。
  3. 分别求出N天内收盘价上涨数之和的平均值(A)和收盘价下跌数之和的平均值(B)。
  4. 代入公式计算RSI值。

1.4 RSI 应用与解读

  1. 超买与超卖:通常,RSI值超过70被认为市场处于超买状态,可能面临回调或下跌压力;而RSI值低于30则被视为超卖状态,可能即将出现反弹或上涨。
  2. 趋势判断:RSI值大于50通常表示市场处于多方市场(即上涨趋势),而小于50则表示市场处于空方市场(即下跌趋势)。
  3. 交叉信号:短期RSI(如6日RSI)与长期RSI(如12日RSI)的交叉情况可以提供交易信号。当短期RSI从下向上突破长期RSI时,视为买入信号;反之,从上向下突破时,则为卖出信号。
  4. 背离现象:当资产价格继续上涨而RSI不再创新高,或价格继续下跌而RSI不再创新低时,这种背离现象可能预示着市场趋势的即将逆转。

       RSI 虽然是一种有效的技术分析工具,但曾被市场“毒打”的我们都知道,不应过度依赖单一指标,而应结合其他技术指标和基本面分析来做出更全面的投资决策。下面我们开始结合VROC 和 RSI 来进行交易策略的构建。

二、结合 VROC 和 RSI 的交易策略设计

       利用 VROC 和 RSI 指标,我们可以考虑以下一些可行的交易策略:

2.1 使用 VROC 进行动量交易

  • 策略:寻找 VROC 上升的股票,这表明市场关注度和成交量都在增加。这可能预示着强劲的上升势头。
  • 当 VROC 跨过预定的买入阈值时,考虑进入多头仓位。
  • 只要 VROC 保持在这一临界值以上,就保持仓位。
  • 当 VROC 开始下降或低于临界值时退出。

2.2 RSI 超买/超卖策略

  • 策略:使用 RSI 识别股价的潜在反转点。
  • 如果 RSI 跌破 30,可能表明该股已经超卖。考虑建立多头头寸。
  • 如果 RSI 升至 70 以上,可能表明股价超买。考虑建立空头头寸或退出多头头寸。
  • 在采取行动之前,一定要监测其他指标,以确认信号。

2.3 结合 VROC 和 RSI 的信号

  • 策略:结合 VROC 和 RSI 洞察力,增强交易信号。
  • 当 VROC 上升(高于买入阈值)且 RSI 低于 30(超卖)时,建立多头头寸。
  • 当 VROC 下降(低于卖出阈值)且 RSI 超过 70(超买)时,建立空头头寸。
  • 这种策略要求两个条件一致,有助于确认信号的强度。

2.4 基于波动性的阈值调整

  • 策略:根据市场波动调整 VROC 和 RSI 临界值。
  • 在动荡的市场中,考虑收紧阈值(如:将 RSI 阈值设置为 25 和 75),以便更快捕捉反转。
  • 在稳定的市场中,更宽的阈值可能有助于捕捉更大的波动(例如,RSI 阈值为 20 和 80)。
  • 根据历史业绩和市场条件不断进行评估和调整。

2.5 追踪止损策略

  • 策略:利用追踪止损保护收益,同时允许进一步上涨。
  • 为多头头寸设置低于市价一定百分比的追踪止损。
  • 如果 RSI 跌破 50,则考虑收紧止损或获利了结。
  • 这种策略既能锁定利润,又能为交易提供发展空间。

三、代码实现

       接下来让我们一起来打造 VROC 和 RSI 交易仪表盘!这个基础的交互式仪表盘专为好奇的新手设计,我举的例子是对标准普尔 500 指数前 50 只股票的分析,包括苹果 (AAPL)、谷歌 (GOOGL) 和特斯拉 (TSLA) 等巨头。让我们来看看如何利用这一工具为您做出更明智的交易决策!下面是主要组件的分解代码:

3.1 建库

import streamlit as st
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta

       我们导入了一些重要的库,如用于网络应用功能的 Streamlit 库、用于获取股票数据的 yfinance 库和用于绘制图表的 matplotlib 库。

3.2 选择股票

top_50_stocks = [
    'AAPL', 'MSFT', 'AMZN', 'GOOGL', 'TSLA',
    ...
]

       我们定义了一份标准普尔 500 指数前 50 名股票的列表,以填充选择下拉菜单。

3.3 计算 VROC

def calculate_vroc(data, period=5):
    data['VROC'] = data['Volume'].pct_change(periods=period) * 100
    return data

       该函数计算成交量变化率 (VROC)。它计算指定时间段内成交量的百分比变化,帮助我们评估交易活动。

3.4 计算 RSI

def calculate_rsi(data, period=14):
    delta = data['Close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    data['RSI'] = 100 - (100 / (1 + rs))
    return data

       在此,我们计算相对强弱指数 (RSI)。该函数计算指定时间段内的平均收益和损失,有助于识别潜在的买入/卖出信号。

3.5 获取数据

def get_yesterday_data(ticker):
    end_date = datetime.now().date()
    start_date = end_date - timedelta(days=1)
    ...
    return data

       该函数获取所选股票前一天的交易数据,确保我们在继续计算之前获得数据。

3.6 信号生成

signals['Signal'] = 0
signals.loc[(signals['VROC'] > vroc_buy_threshold) & (signals['RSI'] < rsi_buy_threshold), 'Signal'] = 1
signals.loc[(signals['VROC'] < vroc_sell_threshold) & (signals['RSI'] > rsi_sell_threshold), 'Signal'] = -1

       根据用户定义的阈值,我们生成买入和卖出信号,帮助交易者确定最佳进出场点。

3.7 绘制图表

fig = plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue')
plt.plot(data['VROC'], label='VROC', color='orange')
plt.plot(data['RSI'], label='RSI', color='green')
plt.title(f'{ticker} Price, VROC, and RSI')
plt.legend()
st.pyplot(fig)

       最后,我们将收盘价、VROC 和 RSI 绘制在一张图表上,让用户直观地了解交易指标。

3.8 完整代码片段

import streamlit as st
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta

# Define top 50 stocks list
top_50_stocks = [
    'AAPL', 'MSFT', 'AMZN', 'GOOGL', 'TSLA',
    # ... add other stocks here
]

# Function to calculate VROC
def calculate_vroc(data, period=5):
    data['VROC'] = data['Volume'].pct_change(periods=period) * 100
    return data

# Function to calculate RSI
def calculate_rsi(data, period=14):
    delta = data['Close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    data['RSI'] = 100 - (100 / (1 + rs))
    return data

# Fetch yesterday's data
def get_yesterday_data(ticker):
    end_date = datetime.now().date()
    start_date = end_date - timedelta(days=1)
    data = yf.download(ticker, start=start_date, end=end_date)
    return data

# Streamlit App
st.title('VROC and RSI Day Trading Dashboard')

selected_stock = st.selectbox('Select a stock:', top_50_stocks)

# Fetch and process stock data
data = get_yesterday_data(selected_stock)
data = calculate_vroc(data)
data = calculate_rsi(data)

# Set trading thresholds
vroc_buy_threshold = st.slider('VROC Buy Threshold', -100, 100, 20)
vroc_sell_threshold = st.slider('VROC Sell Threshold', -100, 100, -20)
rsi_buy_threshold = st.slider('RSI Buy Threshold', 0, 100, 30)
rsi_sell_threshold = st.slider('RSI Sell Threshold', 0, 100, 70)

# Signal generation
data['Signal'] = 0
data.loc[(data['VROC'] > vroc_buy_threshold) & (data['RSI'] < rsi_buy_threshold), 'Signal'] = 1
data.loc[(data['VROC'] < vroc_sell_threshold) & (data['RSI'] > rsi_sell_threshold), 'Signal'] = -1

# Plotting
fig = plt.figure(figsize=(14, 7))
plt.plot(data['Close'], label='Close Price', color='blue')
plt.plot(data['VROC'], label='VROC', color='orange')
plt.plot(data['RSI'], label='RSI', color='green')
plt.title(f'{selected_stock} Price, VROC, and RSI')
plt.legend()
st.pyplot(fig)

四、战略有效性测试

       为了说明 VROC 和 RSI 交易策略的有效性,让我们来看一些示例图表输出结果:

4.1 苹果公司(AAPL)示例

       在这张图表中,我们可以看到:

  • 买入信号:当 RSI 跌破 30,表明 AAPL 超卖,而 VROC 上升,表明买入兴趣增加。这种组合可能预示着潜在的买入机会。
  • 卖出信号:当 RSI 超过 70 且 VROC 开始下降时,表明可能出现卖点。

4.2 特斯拉公司(TSLA)示例

  • 动量交易:图表显示 VROC 显著上升,RSI 低于 30,这可能表明这是一个最佳入场点。
  • 反转点:当 RSI 超过 70 且 VROC 下降时,这可能是一个良好的离场点信号。

4.3 英伟达公司(NVDA)示例

  • 买入机会:VROC 上升,RSI 低于 30,表明有可能做多。
  • 卖出信号:当 VROC 开始下降,RSI 超过 70 时,交易者可以考虑离场。

       以上这些图表展示了 VROC 和 RSI 指标如何有效地识别潜在的进场和出场点,让大家能够充分利用市场波动。

五、观点回顾

  • VROC和RSI是日内交易中非常有用的指标,它们可以帮助你理解市场动态,并发现交易机会。
  • 交易仪表板的交互性和定制化是提高交易效率和个性化交易策略的关键。
  • 通过图表可视化交易数据,使得交易者能够更直观地分析市场趋势。
  • 结合使用VROC和RSI可以增强交易信号的准确性,帮助交易者做出更有信心的决策。
  • 根据市场条件调整交易策略和阈值是至关重要的,这可以帮助交易者适应市场的变化,并捕捉到最佳的交易时机。

       感谢您阅读到最后,希望本文能给您带来新的收获,非常感谢。如果对文中的内容有任何疑问,请给我留言,必复。


文内容仅仅是技术探讨和学习,并不构成任何投资建议。

转发请注明原作者和出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老余捞鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值