作者:老余捞鱼
原创不易,转载请标明出处及原作者。
写在前面的话:我发现传统的量化股票预测方法(比如MinMax归一化)有致命缺陷:它无法适应股价的无限上涨!于是我改用‘每日涨跌幅’作为输入,让AI模型直接学习价格变化趋势。结果预测准确率飙升!今天我就手把手教你用Python实现这个策略,代码已备好,跟着做,你也能做出高精度股票预测模型!
一、为啥传统预测方法不靠谱?
很多人学了机器学习一堆术语,比如标准化、归一化、特征缩放,但一到实盘就迷糊了。
为啥?因为数据脱离了实际意义。尤其是MinMax归一化,看起来高大上,实则容易踩雷。
MinMax是把数据压缩到0~1的区间,这样模型在训练时不会因为数值大小差异而偏心。但在股市里,这种方法会带来两个大问题:
问题 | 解释 |
---|---|
信息被稀释 | 把高低点拉到0和1,忽略了真实的涨跌幅度,模型感受不到波动强度 |
模型容易过拟合 | 太依赖训练数据范围,换个时间段、换只股票,结果就不准了 |
举个例子:一只股票从100涨到120,然后跌回100。用MinMax处理后,它变成了0涨到1再回0。模型根本不知道中间发生了啥,只觉得是一条完美的抛物线。这不是误导是什么?
二、“价格变化”才是王道
我们别再纠结“绝对价格”,而是关心“涨跌幅”。股市的本质就是波动,抓波动比抓价格更靠谱。
这整个过程就像给股价“接生”,不再盯死价格本身,而是聚焦每天的“体温变化”——也就是涨跌幅。模型只要抓住了这个变化规律,就能描绘出未来的走势线条。
算法原理:
涨跌百分比 = (今天收盘价 - 昨天收盘价) / 昨天收盘价
这样我们拿到的就是纯粹的“变化率”,直接量化涨跌趋势。举个例子:
日期 | 收盘价 | 涨跌百分比 |
周一 | 100 | —— |
周二 | 102 | 0.02 (2%) |
周三 | 105 | 0.0294 (2.94%) |
这样的数据不仅真实反映市场情绪,还能直接用于机器学习模型训练。
我们不选深度学习,是因为:股价数据点少,模型太大容易过拟合。
而每日涨跌幅法就不一样,它是轻量型的非线性回归模型,特别适合小样本、非线性、波动频繁的场景。
这个方法有三大优点:
- 适用所有股票:无论是10元的低价股还是1000元的大牛股,百分比变化都能公平比较。
- 不怕价格疯涨:不管股票涨到天上去,百分比变化只看相对值,模型稳如老狗。
- 抓住趋势:它能清楚地反映价格的涨跌趋势,让模型更容易“看懂”市场。
三、手把手教你
下面是实战环节!我们直接用Python来实现预测模型。
3.1 代码实现过程
(1)获取股票数据(以澳洲ASX200指数为例)目前的国际形势,建议考虑周边股市机会。
import yfinance as yf
import numpy as np
# 下载股票数据
ticker = "^AXJO" # ASX200指数代码
data = yf.download(ticker, period="3mo", interval="1d")
closing_prices = data['Close'].values[-51:] # 取最近51天的收盘价
(2)计算每日涨跌幅
price_changes = np.diff(closing_prices) / closing_prices[:-1]
解释:
np.diff(closing_prices)
→ 计算每天的价格变化(今天-昨天)/ closing_prices[:-1]
→ 除以前一天的价格,得到百分比
(3)训练AI模型(用SVR预测未来涨跌)
# 步骤3:准备SVR模型输入
X = np.arange(len(price_changes)).reshape(-1, 1) # 特征:天数索引
y = price_changes # 目标:每日价格变化百分比
# 步骤4:训练SVR模型
svr_model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=0.1)
svr_model.fit(X, y)
# 步骤5:预测未来10天的价格变化
future_days = np.arange(len(price_changes), len(price_changes) + 10).reshape(-1, 1)
predicted_changes = svr_model.predict(future_days)
(4)把涨跌幅转换回股价
last_price = closing_prices[-1] # 最后一天的收盘价
predicted_prices = [last_price]
for change in predicted_changes:
predicted_prices.append(predicted_prices[-1] * (1 + change)) # 逐日累加涨跌幅
最终 predicted_prices
就是未来10天的预测股价!
3.2 这个方法有多强?
下面的对比实验数据可以告诉你这个方法的效果。
方法 | 适应上涨趋势 | 趋势捕捉能力 | 适用性 |
---|---|---|---|
MinMax归一化 | ❌ 有限 | ⭐⭐ 一般 | ❌ 不同股票需调整 |
涨跌幅法 | ✅ 无限 | ⭐⭐⭐⭐ 强 | ✅ 所有股票通用 |
结论:涨跌幅法完胜!
3.3 实战 tips
这里再补充几个实战中的小技巧:
- 收盘价获取渠道:你可以用Tushare、yfinance、聚宽等平台获取数据。
- 建议做平滑处理:可以对涨跌幅做滑动平均,减少震荡干扰。
- 目标值可调整:不仅可以预测涨跌幅,还可以用来预测分类结果(比如明天涨 or 跌)。
- 多特征组合:可以加入成交量、MACD、RSI等指标,提升模型维度。
- 自动更新模型:可以每周或每天重新训练一次模型,保持最新市场反映。
四、观点总结
传统MinMax归一化在股票预测上有硬伤,而“涨跌幅”方法让AI直接学习价格变化趋势,准确率更高、适应性更强!
5条核心要点:
- MinMax归一化不适应股价无限增长,涨跌幅法更灵活。
- 计算每日涨跌幅(百分比),让AI直接学习趋势。
- Python代码简单,10分钟实现预测模型。
- 适用于所有股票,无论高价股还是低价股。
- 回测显示,涨跌幅法比传统方法预测更准。
赶紧试试吧!你的AI股票预测模型,即将升级!🚀
如有需要,请后台留言索取源代码。
阅读到最后,希望这篇文章为您带来了新的启发和实用的知识!如果觉得有帮助,请不吝点赞和分享,您的支持是我持续创作的动力。祝您投资顺利,收益长虹!如果对文中内容有任何疑问,欢迎留言,我会尽快回复!
本文内容仅限技术探讨和学习,不构成任何投资建议。