博客摘录「 yolo 11从原理、创新点、训练到部署(yolov11代码+教程)」2025年4月28日

2.1 新的 Backbone 设计YOLOv11 引入了一个改进的 Backbone 网络架构,采用了 CSPNet(Cross Stage Partial Network)的升级版。CSPNet 的引入使得 YOLOv11 在计算量相对较低的情况下能够更有效地提取深度特征,从而提高模型的表达能力。具体来说,CSPNet 通过将特征图进行部分跨层连接,减少了冗余梯度信息,提高了模型的学习效率和泛化能力。2.2 SPPF(Spatial Pyramid Pooling - Fast)YOLOv11 引入了 SPPF 模块,改进了 YOLOv4 中的 SPP(Spatial Pyramid Pooling)。SPPF 通过快速空间金字塔池化操作,进一步提高了特征提取的效率。这一模块能够将输入特征进行多尺度处理,从而增强模型对目标大小变化的鲁棒性。SPPF 模块结构紧凑、计算高效,并且在不明显增加计算成本的前提下,提高了检测效果。2.3 PA-Net 的改进YOLOv11 采用了改进版的 PANet 结构,用于增强特征融合能力。PANet 通过横向连接的方式,在不同层次的特征图之间进行信息流通,从而让高层特征更好地利用低层的细节信息。2.4 自适应锚框机制YOLOv11 引入了自适应锚框机制(Auto-anchor),自动优化不同数据集上的锚框配置。这一机制避免了手工调整锚框的繁琐过程,并确保锚框大小适配目标物体的分布,提高了检测精度。2.5 EIoU 损失函数为了更好地处理目标检测中的边界框回归问题,YOLOv11 引入了新的 EIoU(Extended IoU)损失函数。相比传统的 IoU(Intersection over Union)损失,EIoU 不仅考虑了预测框与真实框的重叠面积,还引入了长宽比和中心点偏移的惩罚项,从而加快了收敛速度并提高了预测精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值