统计学中常见的分布有:
1. 正态分布(Normal Distribution):也称为高斯分布,是最常见的分布之一,具有钟形曲线,对称且均值和标准差可以完全描述该分布。
2. 二项分布(Binomial Distribution):描述了重复进行一系列独立的二元试验,例如抛硬币或进行有限次数的成功与失败的实验。它的特征是具有确定的成功概率和试验次数。
3. 泊松分布(Poisson Distribution):适用于描述单位时间或空间内随机事件发生次数的概率分布。它主要用于计算罕见事件的概率,例如计算在某个时间段内发生的车祸的数量。
4. 均匀分布(Uniform Distribution):以一致的概率分布在一定范围内随机地选择数值。在一个区间内的每个值都有相等的概率。
5. 指数分布(Exponential Distribution):描述了时间或空间上连续事件的间隔时间。它经常用于建模随机事件的时间间隔。
6. 伽马分布(Gamma Distribution):是指数分布的推广,适用于描述连续时间事件的等候时间。
7. F分布(F-Distribution):应用于统计假设检验,例如比较两个样本方差的差异。
8. t分布(t-Distribution):常用于小样本量的假设检验,例如在小样本下进行均值的比较。
这只是一些统计学中常见的分布,实际上还有很多其他的分布,每个分布都有不同的应用和特点。
正态分布的特点是具有钟形曲线,对称且均值和标准差可以完全描述该分布。实际案例包括身高、体重、智商等连续数据的分布。
二项分布的特点是描述了重复进行一系列独立的二元试验,具有确定的成功概率和试验次数。实际案例包括抛硬币、掷骰子、进行有限次数的成功与失败的实验。
泊松分布的特点是适用于描述单位时间或空间内随机事件发生次数的概率分布。实际案例包括计算在某个时间段内发生的交通事故、电话呼叫、邮件到达等事件的数量。
均匀分布的特点是在一定范围内随机地选择数值,每个值都有相等的概率。实际案例包括抽奖活动、随机选择样本等。
指数分布的特点是描述了时间或空间上连续事件的间隔时间。实际案例包括计算连续时间内发生两次事件的间隔时间,例如两次用户登录网站的间隔时间。
伽马分布是指数分布的推广,适用于描述连续时间事件的等候时间。实际案例包括计算连续时间内多次事件的总等候时间,例如多次用户登录网站的总等候时间。
F分布主要应用于统计假设检验,例如比较两个样本方差的差异。实际案例包括在实验中比较两种不同处理的效果。
t分布常用于小样本量的假设检验,例如在小样本下进行均值的比较。实际案例包括小样本量的调查研究、实验设计中的差异检验。
以下是使用Python生成这几种分布的示例代码:
正态分布:
import numpy as np
import matplotlib.pyplot as plt
mean = 0
std = 1
data = np.random.normal(mean, std, 1000)
plt.hist(data, bins=30, density=True)
plt.show()
二项分布:
import numpy as np
import matplotlib.pyplot as plt
n = 10
p = 0.5
data = np.random.binomial(n, p, 1000)
plt.hist(data, bins=n+1, range=[0, n], density=True)
plt.show()
泊松分布:
import numpy as np
import matplotlib.pyplot as plt
lam = 3
data = np.random.poisson(lam, 1000)
plt.hist(data, bins=20, density=True)
plt.show()
均匀分布:
import numpy as np
import matplotlib.pyplot as plt
a = 0
b = 10
data = np.random.uniform(a, b, 1