函数依赖(总结)

本文详细介绍了数据库理论中的函数依赖概念,包括非平凡函数依赖、决定因子、完全函数依赖等核心概念,以及函数依赖的推理规则和闭包计算方法。同时,阐述了候选键的求解方法,强调了属性分类在确定候选键中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念:如果有一个关系模式R(A1,A2,…,An),X和Y为R的子集,r是R的任一具体关系,那么对于关系r中的任意X值,都只有一个Y值与之对应,称X函数决定Y或Y函数依赖于X。例:对于关系模式SC(sno,cno,grade)有以下函数依赖关系:(sno,cno)→grade

基本术语和符号:

1.如果XY,但Y不包含于X,则称X→Y是非平凡的函数依赖;如果X→Y,但Y包含于X,则称X→Y是平凡的函数依赖。

2.如果X→Y,称X为决定因子。

3.如果X→Y,且Y→X,记作X\leftrightarrowY。  

4.如果X→Y,并且对于X的任意真子集X1都有Y不函数依赖于X1,称Y完全函数依赖于X,记作X\overset{f}{\rightarrow}Y;如果X1→Y成立,则称Y部分函数依赖于X,记作X\overset{p}{\rightarrow}Y。

5.如果X→Y,Y→Z,称Z传递函数依赖于X。

6.设K为关系模式R的一个属性或属性组,若满足:K\overset{f}{\rightarrow}A1,K\overset{f}{\rightarrow}A2,...,K\overset{f}{\rightarrow}An,则称K为关系模式R的候选键。

函数依赖的推理规则:

自反律:若Y\subseteqX\subseteqU,则X\rightarrowY在R上成立。

增广律:若X→Y在R上成立,且Z\subseteqU,则XZ→YZ在R上也成立。

传递律:X→Y和Y→Z在R上成立,则X→Z在R上也成立。

合并规则:若X→Y和X→Z在R上成立,则X→YZ在R上也成立。

分解规则:若X→Y和Z\subseteqY在R上成立,则X→Z在R上也成立。

伪传递规则:若X→Y和YW→Z在R上成立,则XW→Z在R上也成立。

复合规则:若X→Y和W→Z在R上成立,则XW→YZ在R上也成立。

函数依赖集闭包:在关系模式R(U,F)中,U是R的属性全集,F是R上的一组函数依赖。所有被F逻辑蕴涵的函数依赖的全集称为F的闭包,记作F^{+}

计算F^{+}:1. 初始,F^{+}=F

                 2. 对F中的每个函数依赖f应用自反律和增广律,并将结果加入F^{+}中;若F中的两个函数依赖可以用传递律连接起来,也加入F^{+}中。 

                 3. 重复步骤2,直到F^{+}不再增大。

属性集闭包X^{+}{A | X\rightarrowA能够由F根据Armstrong公理导出}

计算X^{+}:1. 初始,X^{+}=X

                 2. 若F中有某个函数依赖Y\rightarrowZ满足Y\subseteqX^{+},则X^{+}=X^{+}\cupZ。

                 3.  重复步骤2,直到X^{+}不再增大。

R的属性:1. L类:仅出现在函数依赖左部的属性。

                 2. R类:仅出现在函数依赖右部的属性。

                 3. N类:在函数依赖左部和右部均不出现的属性。

                 3. LR类:在函数依赖左部和右部均出现的属性。

 候选键求解方法:1. 若X是L类,则X一定包含在关系模式R的任何一个候选键中:若X^{+}包含了R的全部属性,则X为关系模式R的唯一候选键。

                              2. 若X是R类,则X不包含在关系模式R的任何一个候选键中。

                              3. 若X是N类,则X一定包含在关系模式R的任何一个候选键中。

                              2. 若X是LR类,则X可能包含在关系模式R的某个候选键中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值