商业求解器的前世:数学规划问题与算法实践

本文介绍了商业求解器的发展历程,从乔治·斯蒂格勒的饮食问题到现代的Gurobi、CPLEX和Xpress等主流求解器。求解器在能源电力、航空航天等领域广泛应用,通过深度学习和运筹优化技术,能在数秒内提供决策最优解。文章还提及了单纯形法、旅行商问题和早期的计算机方程求解,展示了求解器技术的重要性和演进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求解器一般用来解决大规模现实问题中的最优解,基于深度学习和运筹优化技术的发展,求解器可以在数秒内给出决策答案。作为重要的工业软件之一,目前已经应用到能源电力、航空航天、轨道交通等各领域。

目前,Gurobi、CPLEX和Xpress被视为三大主流求解器,占据90%的国际市场份额。针对任何约束条件下的问题最优解,它都可以在数秒内给出答案,大大地提升了决策效率。而这一技术的发展,也要从一个饮食优化问题说起。

01

斯蒂格勒饮食和旅行商问题

单纯形法是求解线性规划(LP)问题最为常见的算法之一,也是当前很多求解器的算法框架之一。线性规划作为数学规划的一个重要的分支,可以追溯到1945年George Stigler提出的饮食问题。而针对这一问题的求解,也是单纯形法问世的开始。

“斯蒂格勒饮食”是以 1982 年诺贝尔经济学奖得主George Stigler命名的优化问题,“对于一个体重154磅(70 公斤)的适度运动的人来说,为了满足9种不同营养素的摄入量达到国家研究委员会在 1943 年建议的推荐膳食摄入量(RDA),每天应该摄入77种食物中的哪些品类,且成本最低?”

这一问题包含9个约束条件,77个变量。这一问题提出之际,线性规划算法尚未出现,但他使用了启发式方法进行求解,从最初的77种食物中剔除62种(这些食物被剔除是因为它们与其余15种相比缺乏营养),通过计算出剩余的15种食物中,每种食物所需的数量,得出成本最小化解决方案,每年成本是39美元。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值